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Abstract 

The present paper compares the efficiency of irrigated and rain-fed farming in North Sumatra 

using a household farm survey for the 2022 growing season. The authors use the Data 

Envelopment Analysis (DEA) model, mean difference test, and Tobit regression. Empirical 

results reveal that irrigated farming is more efficient than rain-fed based on CRS and SE 

assumptions. However, access to irrigation was found to harm rice farming efficiency. Unequal 

distribution of water, scarcity of water during the growth period, and excess water during the 

harvest cause a decrease in the efficiency of irrigated farming. The age of the head of 

household, education, and access to credit was also found to harm technical efficiency. In 

contrast, the experience variable in participating in farmer groups because it has a positive 

impact on the efficiency of rice farming. The results provide valuable insights for transforming 

water management and strengthening the need for investment in irrigation infrastructure as a 

poverty alleviation mechanism and means to achieve rice farming sustainability in North 

Sumatra. 
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Introduction  

Although Indonesia's economy has diversified away from agricultural dependency since 

the government focused on downstream industry programs in 2010, rice production remains 

the primary economic sector. Rice farming is given higher priority than other agricultural 

activities because rice is a staple food and provides food security for rural farmers. In total, 

58% of rice farmers own small plots of less than half a hectare, 47.5% of agricultural 

households cultivate rice, and 39.7% of the main livelihood for agricultural households comes 

from rice farming (BPS-Statistics, 2018). Java produces approximately 50% of rice, while the 

islands of Sumatra and Sulawesi contribute 20% and 12%, respectively (FAS & USDA, 2020). 

North Sumatra Province contributes 3.73% to national rice production (BPS, 2021).  
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Approximately 85% of Indonesia's rice production comes from irrigated paddy fields 

(FAS & USDA, 2020). Countries such as Thailand, the Philippines, and Brazil use irrigated 

land to increase national rice production (Sumaryanto et al., 2023). Apart from contributing to 

increasing farm production, irrigation also contributes to the welfare of farmer households. The 

study by Dillon, (2008) and Kuwornu & Owusu (2012) explains that access to irrigation 

contributes positively to household expenditure. (Dillon, 2008) study also found access to 

irrigation to increase savings and maintain household food security. Another study found that 

an increase in the area of irrigated land contributed to reducing rural poverty (Septiadi et al., 

2016).  

Although access to irrigation contributes to rice production and household welfare, not 

all farmers have access to irrigation. 40% of rice fields in Indonesia are not irrigated (FAS & 

USDA, 2020). Specifically in Sumatra, only 11% of paddy fields have irrigation infrastructure, 

while the rest rely on rainwater for rice farming (Wahyunto & Widiastuti, 2017). Furthermore, 

50% of the irrigation networks were damaged causing rice fields to experience water scarcity 

(Purwantini & Suhaeti, 2017). Extreme climate change, such as drought, also results in water 

scarcity (Khanal & Regmi, 2018). Water scarcity due to no access to irrigation, damaged irrigation 

networks, and climate change has decreased rice production and economic losses (Dar et al., 

2020; Gedara et al., 2012). 

Increasing rice productivity is essential because it maintains political and economic 

stability in Indonesia. Increasing efficiency, increasing land area, and developing technology 

are ways to increase productivity (Antriyandarti, 2015) Small-scale farmers need more capital 

to increase their land. Efficient utilization of existing technology to its full potential is more 

important than developing technology in the short term. Kalirajan et al., (1996) explained that 

it is not wise to introduce new technology if the existing technology is not used optimally. 

An agricultural production process is technically efficient if and only if the maximum 

quantity of output can be achieved for a given number of inputs and technologies (Haryanto et 

al., 2015). Most previous studies that measure efficiency always refer to the concept of 

efficiency stated by Farrell, (1957). Farrell (1957) stated that efficiency could be measured in 

relative terms as a deviation from the producers' best practices compared to producer groups. 

The concept of efficiency expressed by Farrell relates to benchmarking techniques. The 

benchmarking techniques aim to analyze how the more successful growers achieve their high-

performance levels, determine what and where improvements are needed, and use this 

information to enhance farm performance (Alem et al., 2018). In general, efficiency 

assessments provide two essential pieces of information: information about the efficient 

allocation of resources and actions to reduce inefficient inputs (Anang et al., 2020). Farm 

inefficiency can be defined as the degree to which a grower uses more resources to produce a 

given output level than the resources used by best-practice growers (Alem et al., 2018). 

Therefore, growers must reduce inputs to make their farms efficient. 

Theoretically, two methods commonly used to estimate the frontier function are 

Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) (Nguyen et al., 

2020). The SFA model is a parametric method that accommodates noise in the data and defines 

functional forms and models to measure the sources of inefficiency (Kumbhakar et al., 2009). 

However, this estimation procedure has been criticized can produce biased conclusions because 

the SFA model ignores the assumption independently and identically distributes the error term 
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in the second stage of estimation (Coelli et al., 2005). DEA models that use non-parametric 

methods are widely applied because they are more flexible than parametric methods. The DEA 

model's main advantages are avoiding the technology's parametric specifications and avoiding 

distributional assumptions for inefficiency terms (Nguyen et al., 2020). The ability of a farm 

manager to convert inputs into outputs through a particular technology is often affected by the 

environment in which production takes place (Alem et al., 2018). Management skills, access 

to irrigation, risk attitudes, constraints on institutions, and innovation include environmental 

factors. Environmental factors cannot be estimated simultaneously with the frontier production 

function in the DEA model (Haryanto et al., 2015). Therefore, most efficiency studies use Tobit 

regression to provide information about the impact of environmental factors on agricultural 

efficiency (Anang et al., 2020).  

 

Literature Review 

Many previous studies have compared the technical efficiency of irrigated and rainfed 

rice and measured the effect of irrigation on technical efficiency. Previous studies, using both 

the SFA and DEA models, found that irrigated rice farming is more efficient than rainfed rice 

farming (Anang et al., 2017; Haryanto et al., 2016; Mkanthama et al., 2018; Pede et al., 2018; Watto 

& Mugera, 2014). In contrast, another study found that rainfed rice farming is more efficient 

than irrigated rice farming (Al-Hassan, 2008; Thibbotuwawa et al., 2013). Previous studies 

show that there is still debate about the benefits of irrigation on the efficiency of rice farming. 

In addition, no study has examined the comparison of technical efficiency in irrigated and rain-

fed land in North Sumatra. Therefore, our study aims to measure the technical efficiency of 

rice farming, compare the technical efficiency of rice farming on irrigated and rainfed land, 

and measure the effect of irrigation on the technical efficiency of rice farming in Deli Serdang 

Regency, North Sumatra Province. 

 

Materials and Methods 

Study area and data collection 

Deli Serdang Regency is the largest rice producing area in North Sumatra Province, 

which is located at 2°57' to 3°16' North Latitude and 98°33' to 99°27' East Longitude. This area 

has three water sources: the Lau Simeme Dam, the Sei Serdang Dam, and the Ular River basin. 

The three water sources are hydropower generation, drinking water, and irrigated agriculture. 

However, during this study, the Sei Serdang dam was damaged, and the Lau Simeme dam was 

not yet focused on irrigated agriculture. Therefore, farmers still utilize traditional irrigation 

systems sourced from the Ular River basin. 

This study chose Tanjung Morawa District as the research location because most rice 

farming utilizes an irrigation system. As a comparison, we chose Hamparan Perak District as 

the research location because most farmers use rainfed. Field surveys were conducted using 

structured questionnaires and interview schedules to obtain input and rice production for this 

study. A simple random sampling technique was used to select 500 farmers who actively 

participated in irrigation and rainfed schemes. However, only 400 farmers could answer and 

complete the questionnaires correctly in both farming systems, of which 220 samples were for 

irrigated farming and 180 were for rainfed farming. Quantities of rice, fertilizer, labor, 
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machinery, seeds, pesticides, land, and socioeconomic attributes were collected between 

February and April 2023 for the 2022 growing season. 

 

Efficiency measurement 

DEA was chosen over other methods because it handles multiple inputs and multiple 

outputs; does not require prior weighting (as in index numbers); emphasizes individual 

observations rather than statistical estimates (as in regression analysis); and is a dynamic 

analytic decision-making tool that does not only provide a "snapshot" of the current efficiency 

of a DMU compared to a group but also shows possibilities for increasing relative efficiency; 

use a benchmarking approach to measure the efficiency of a DMU relative to other DMUs in 

their group; can assist in identifying best practice or efficient DMUs and inefficient DMUs 

within the group; and DEA results allow policymakers to develop policies that can help 

relatively inefficient DMUs improve their performance (Agarwal et al., 2010). Based on the 

assumptions, the DEA model consists of two types: CCR-DEA is a DEA model with the 

assumption of CRS (constant return to scale), while BCC-DEA is a DEA model with the 

assumption of VRS (variable return to scale. Based on the orientation, the DEA model consists 

of input-oriented and output-oriented DEA models. The input-oriented DEA model focuses on 

reducing the input for a given output level. In contrast, the output-oriented DEA model focuses 

on maximizing the proportional increase in output with a given set of inputs (Coelli et al., 2005). 

This study uses an input-oriented DEA model because this model can apply the principle of 

scarcity through the input targets used and deal with the problem of increasing input prices. 

The conventional DEA model for estimating technical efficiency can be written as follows 

(Coelli et al., 2005): 

 

𝑴𝒊𝒏𝜽,𝝀𝜽𝒌 

Subject to:                                                                                                                           (1) 

−𝒚 + 𝒀𝝀 ≥ 𝟏 

𝜽𝒙𝒌 − 𝑿𝝀 ≥ 𝟎 

∑ 𝝀𝒋 = 𝟏

𝒏

𝒋=𝟏

 

𝝀 ≥ 𝟎 

 

Where 𝜽𝒊 is the value of technical efficiency (TE) ranging from 0 to 1, a TE value equal to 1 

implies that a sugarcane farmer is technically efficient. In contrast, a TE value below 1 

(𝟎 < 𝑶𝑻𝑬 < 𝟏) means that a sugarcane farmer is technically inefficient. The vector 𝝀 is a 

weight vector (constant) Nx1 that defines the linear combination of the counterparts of the k-

th DMU (each of N farmers). Y represents the vector of the output quantities, and X represents 

the vector of the observed inputs. y is the output vector of the i-th DMU compared to the output 

vector of the theoretically efficient DMU (𝒀𝝀). 𝑿𝝀 is the minimum input of the theoretically 

efficient DMU, given the output level produced by the i-th DMU (each of N farmers). Xi is the 

input level of the k-th DMU (Coelli et al., 2005).  

Equation (1) represents the constant return-to-scale (CRS), also known as overall 

technical efficiency (OTECRS), suggesting that farmers operate on an optimal scale. The 
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OTECRS consists of two components: the pure technical efficiency (PTE), which represents the 

management practices under the assumption of variable return-to-scale (VRS), hence denoted 

as PTEVRS, and the residual called the scale efficiency (SE). For efficiency under variable 

returns to scale (VRS), the additional convexity constraint ∑ 𝝀 = 𝟏 gives rise to the VRS 

frontier. This constraint ensures that the ratio of inefficient farms in the region to the provisions 

of farm size must be equal. SE is used to determine the scale of farm operations, which is the 

ratio of OTE to PTE (Coelli et al., 2005). DEA for this study was performed using Max DEA 

8, open-source software. 

When rice farming is inefficient, DEA allows setting input and output targets to 

improve performance. Thus, any inefficient rice farm can become efficient as a whole by 

adjusting its operations to a related target point determined by the performance of the efficient 

rice farm which determines its reference limit. According to the model, the targets of inefficient 

rice farming are as follows: 

For output: 

𝒚𝒓𝒌̅̅ ̅̅̅ = 𝒚𝒓𝒌 + 𝑺𝒓𝒌
+∗ = ∑ 𝝀𝒋𝒌

∗ 𝒚𝒓𝒋

𝒏

𝒋=𝟏

 

For Inputs                 (2) 

𝒙𝒊𝒌̅̅ ̅̅ = 𝜽𝒌
∗ 𝒙𝒊𝒌−𝑺𝒊𝒌

−∗ = ∑ 𝝀𝒋𝒌
∗ 𝒙𝒊𝒋

𝒏

𝒋=𝟏

 

 

Where 𝒚𝒓𝒌̅̅ ̅̅̅(𝒓 = 𝟏) and 𝒙𝒊𝒌̅̅ ̅̅ (𝒊 = 𝟏 … 𝟔) are the respective target outputs and inputs for the k-th 

rice farm; 𝒚𝒓𝒌 and 𝒙𝒊𝒌 are actual output and input of the k-th rice farm respectively; 𝜽𝒌
∗  is the 

optimal efficiency score of the k-th rice farm; 𝑺𝒊𝒌
−∗ is the optimal slack input from the k-th rice 

farm for 𝒊 = 𝟏 … 𝟔; and 𝑺𝒓𝒌
+∗ is the optimal output slack of the k-th rice farm for 𝒓 = 𝟏 

The next step is to compare the efficiency scores of irrigated and rainfed agriculture. 

The f test is used to investigate whether the data is normally distributed or not. The mean 

difference test is used to see the significant level of the two efficiency scores. 

 

Regression analysis 

Socioeconomic variables that are hypothesized to affect the technical efficiency of rice 

farming include the age of the head of the household, household size, sex, education, frequency 

of attending counseling (extension contacts), experience in farmer groups, access to credit, and 

farming experience are examined. The effect of socio-economic variables on efficiency cannot 

be tested in the DEA model. According to (Coelli et al., 2005), Tobit regression can be used to 

determine sources of inefficiency in agriculture. For more details with the following 

specifications: 

𝑇𝐸𝑖 = 𝛽0 + 𝛽1𝑍1 + 𝛽2𝑍2 + ⋯ + 𝛽9𝑍9 + 𝜀𝑖  

For efficiency score           (3) 

𝑇𝐸𝑖 = 𝐿1𝑖; 𝑖𝑓 𝑇𝐸𝑖
∗ ≤ 𝐿1𝑖 

       = 𝑇𝐸𝑖
∗; 𝑖𝑓 𝐿1𝑖 < 𝑇𝐸𝑖

∗ ≤ 𝐿2𝑖 

       = 𝐿2𝑖; 𝑖𝑓 𝑇𝐸𝑖
∗ ≤ 𝐿2𝑖 
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Where 𝑇𝐸𝑖 is the dependent variable being reviewed; 𝑇𝐸𝑖
∗ is the technical efficiency of farmers 

in rice production; 𝛽𝑖  is a vector of parameters to be estimated; 𝑍𝑖 is an explanatory variable 

vector that represents socioeconomic characteristics; 𝑍1 is the age of the head of the household 

(years); 𝑍2 is the size of the household (number); 𝑍3 is the sex of the head of the household (0 

if female and one if male); 𝑍4 is the duration of formal education (years); 𝑍5 is an extension 

contact (frequency in the last year); 𝑍6 is experience in farms group (years); 𝑍7  is access to 

credit (0 if not and one if yes); 𝑍8 is farming experience (years); 𝑍9 represents access to 

irrigation (0 if no and one if yes);  𝜀𝑖 is error term; 𝐿1𝑖 and 𝐿2𝑖 are the lower and upper limit. 

This model will be estimated by the maximum likelihood method with Stata 16. 

 

Result and Discussion 

Descriptive statistics of the variables used in the study  

Table 1 presents the socio-demographic characteristics and input and output variables 

of a sample of rice farmers disaggregated by access to irrigation, with probabilities showing 

the test results for the mean difference between irrigated and rainfed agriculture. The results 

show that rice produced from irrigated agriculture is 75 % significantly higher than rainfed 

agriculture. The average labor force and pesticides used in irrigated and rainfed agriculture 

were not statistically significant. The fertilizer used in irrigated agriculture is significantly two 

times higher than in rainfed agriculture. The difference is statistically significant at the 1% 

significance level found in the machine variable, in which rice farming on irrigated land uses 

more agricultural machinery than farming on rainfed land. In contrast, rainfed rice farmers 

cultivate an area of 0.83 ha, 28 % larger than irrigated rice farming. Rainfed rice farming also 

uses more seeds by 65% than irrigated rice farming, a statistically significant difference at the 

1% significance level. 

 

 

 

 

Table1. Descriptive statistics of the variables used in the study 

Variable Irrigated farms (N=220) Rain-fed farms (N=180) Prob (T) 

Mean SD Mean  SD 

Rice yield (kg/ha) 6953.729 662.496 3973.609 586.296 0.0000 

Labor (man days/ha) 32.819 17.192 34.324 14.739 0.3465 

Fertilizer (kg/ha) 501.876 175.399 158.480 55.996 0.0000 

Land (ha) 0.646 0.504 0.830 0.868 0.0123 

Machine (man days/ha) 15.721 4.163 1.999 1.144 0.0000 

Seed (kg/ha) 45.123 10.599 74.295 10.584 0.0000 

Pesticide (liter/ha) 1.715 1.370 1.860 2.127 0.4307 

Age (years) 49.313 9.519 47.761 10.798 0.1275 

Household size (number) 4.6 1.536 4.255 1.398 0.0207 

Sex (1:male; 0:female) 0.831 0.374 0.872 0.334 0.2613 

Education (years) 10.486 2.418 7.361 3.819 0.0000 

Extension contact (number) 1.681   1.158   1.3 0.902 0.0002 

Experience in farms group (years) 7.818 7.407 10.566 9.340 0.0015 

Access credit (1:yes; 0:no) 0.177 0.382 0.266 0.443 0.0337 
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Farm experience (years) 18.968 11.739 20.711 11.401 0.1353 

 

In reviewing socio-demographic characteristics, we found irrigated rice farmers had 

higher family members, education, and frequency of contact with extension agents than rainfed 

rice farmers, in which the differences were statistically significant at the 1% and 5% levels. 

Furthermore, we found that rainfed rice farmers had more prolonged experience joining farmer 

groups and greater access to credit than irrigated rice farmers. The differences were statistically 

significant at the 1% and 5% levels. Lastly, there were no statistically significant differences 

in age, sex, and farming experience for the two rice farming systems. 

 

Results of rice farming technical efficiency 

The estimated efficiency of the sample rice farms under the assumptions of CRS, VRS, 

and SE is presented in Table 1. Under CRS, TE ranged between 0.44 and 1, with a mean score 

of 0.818. Based on the mean CRS score, rice farmers must reduce inputs by 18.2 % to make 

their rice farming efficient. Under the VRS, TE ranged between 0.62 and 1, with a mean score 

of 0.911. Based on the mean VRS score, the sample of rice farmers must reduce inputs by 

8.89% so that their rice farming is efficient. Under SE, TE ranged between 0.54 and 1, with a 

mean score of 0.899. Based on the mean SE score, the sample of rice farmers must reduce 

inputs by 10.1% so that their rice farming is efficient. 

The findings are comparable to other studies. Based on a study on the efficiency of rice 

farming in Indonesia, the efficiency score we found was lower than the rice farming efficiency 

score presented by Junaedi et al. (2016) and Sumaryanto et al. (2023), while our results were 

still higher than Haryanto et al. (2016) and Heriqbaldi et al. (2015)  findings. Based on a study 

on the efficiency of rice farming in North Sumatra, the efficiency score we found is the same 

as the Heriqbaldi et al. (2015) findings. The results indicate an enormous scope to enhance the 

TE of the respondents through improvement in input allocation at the farm level. 

 

Table 1. Rice farming technical efficiency score 

Efficiency Mean  Std. Dev Minimum Maximum 

TE CRS 0.81801 0.12152 0.44263 1 

TE VRS 0.91122 0.09849 0.62346 1 

SE 0.89975 0.1035 0.54298 1 

 

Table 2 compares efficiency scores based on irrigated and rainfed farming. Under the 

CRS assumptions, our study found the efficiency score of irrigated farming to be significantly 

higher than the efficiency score of rainfed agriculture. In contrast, under the VRS assumptions, 

the efficiency score of rainfed agriculture is significantly higher than the efficiency score of 

irrigated farming. The CRS TE score is lower than the VRS TE score because the DEA model 

assumes that the CRS focus on agrarian production is at an optimal scale (Coelli et al., 2005). 

In other words, small-scale producers are unfairly compared to the most productive producers 

on the CRS assumption (Dalei & Joshi, 2020).  

Furthermore, the DEA model assumes CRS focuses on overall efficiency, while the 

DEA model assumes VRS focuses on the managerial expertise of producers (Perrigot & Barros, 

2008). Better managerial skills in rainfed farms may cause the TE VRS score to be higher than 
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its competitors. However, we found that the SE scores of irrigated farming were significantly 

higher than those of rainfed agriculture. SE denotes producers operating on the most productive 

scale (score = 1) or represents a highly efficient performance measure regarding the 

maximization of average productivity (Nandy et al., 2019). Therefore, we conclude that 

irrigated rice farming is more efficient than rainfed lowland rice farming based on TE CRS and 

SE scores. Many previous studies stated that irrigated farming is more efficient than rain-fed 

farming (Anang et al., 2017; Haryanto et al., 2016; Mkanthama et al., 2018; Pede et al., 2018; Watto 

& Mugera, 2014). However, Al-Hassan, (2008), Makombe et al. (2017), and Thibbotuwawa et 

al. (2013) found rain fed agriculture to be more efficient than irrigated agriculture, possibly 

due to poor water management and the lack of volume of water distributed for crop production 

that causes inefficient irrigated agriculture (Makombe et al., 2017). Biswas et al. (2021) stated 

that irrigation infrastructure needs to be improved, and the high cost of accessing irrigation 

water causes irrigated rice farming to be inefficient in allocating inputs. 

 

Table 2. Efficiency scores based on irrigated and rainfed farms 

Efficiency Irrigated farms (N=220) Rain-fed farms (N=180) Mean difference 

 Mean  Std. error Mean Std. error 

TE CRS 0.82836 0.00761 0.80535 0.00972 1.8627* 

TE VRS 0.87363 0.00743 0.95717 0.004 -9.8927*** 

SE 0.94916 0.00397 0.83937 0.00848 11.7182*** 

***,* denotes significant levels at 1% and 10%, respectively.  

 

Return to scale and reduction of inputs 

Rice farming is at optimal or not optimal scale presented in Table 3. CRS (constant 

return to scale) shows the optimal scale, while IRS (increasing return to scale) and DRS 

(decreasing return to scale) represent sub-optimal operating scales. Most rice farmers, whether 

using irrigation or rainfed farming, are at a sub-optimal operating scale. In other words, only 

15% of farming is at optimal scale. 

The IRS situation is dominant for both farming systems, which is 69.09 % for irrigated 

farming and 84.44 % for rain-fed farming. The IRS situation shows that its operating scale is 

below optimal (Sufian & Kamarudin, 2014). Rice farms in an IRS situation are advised to scale 

up their operations to save costs and improve efficiency. The scale of operations can be 

increased when producers can consolidate their business sectors (Sufian & Kamarudin, 2014). 

Anang et al. (2017) stated that cooperation in farmer groups could make it easier for them to 

obtain credit, allocate production inputs efficiently, and increase production efficiency. 

Therefore, rice farms in an IRS situation need to work together in farmer groups to increase 

their scale of operation and efficiency. 

 

Table 3. Distribution of efficiency scores and returns to scale 

Indicator Irrigated farms (%) Rain-fed farms (%) 

 TE CRS TE VRS SE TE CRS TE VRS SE 

0.4-0.49 0 0 0 0.56 0 0 

0.5-0.59 0.91 0 0 6.67 0 2.22 

0.6-0.69 13.64 9.09 0.45 11.11 0 9.44 

0.7-0.79 27.27 18.64 3.19 33.89 0 22.22 
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0.8-0.89 31.82 26.81 17.72 19.44 17.22 33.90 

0.9-0.99 11.36 21.82 63.64 13.33 41.11 17.22 

1 15 23.64 15 15 41.67 15 

CRS   15   15 

DRS   15.91   0.56 

IRS   69.09   84.44 

 

Irrigated rice farming operating on DRS is 15.91%, while 0.56% for rainfed rice 

farming. The DRS situation shows that their operating scale is above the optimal scale. Rice 

farming in a DRS situation is advised to reduce the scale of operations to save costs and 

increase efficiency (Sufian & Kamarudin, 2014). Reducing the scale of operations can be done by 

reducing the area of rice farming land so that they are efficient. (Schultz, 1964) states that 

small-scale farmers are more efficient than large-scale farmers because small-scale farmers are 

more efficient in allocating resources. In other words, poor farmers who use family labor 

intensively on small plots have an impact on increasing land productivity. Another way to 

reduce the scale of operations is to replace rice crops with cash crops. Cash crops are plants 

produced and sold immediately after harvest, while food crops are agricultural commodities 

primarily for household consumption. Rice is a food crop because most farmers save some rice 

for household consumption while the rest is sold. Farmers' decision to change food crops to 

cash crops has the potential to increase technical efficiency and reduce poverty (Ubabukoh et 

al., 2023). Therefore, reducing the land area by utilizing intensive family labor and replacing 

some rice crops with cash crops can potentially increase the productivity and efficiency of 

irrigated and rainfed rice farming.  

 

Table 4. Reduction of inputs by farming system 

Variable Irrigated farms (N=220) Rain-fed farms (N=180) Mean difference 

Mean (%) Std. error Mean (%) Std. error 

Input reduction based on CRS assumption 

Labor 20.48471 1.01597 22.65059 1.02741 1.4857 

Fertilizer 19.72045 0.85653 38.62109 2.892 -6.2664*** 

Land 11.74785 0.95159 13.48646 1.1559 -1.1722 

Machine 20.59435 0.88142 19.65411 0.98097 0.7134 

Seed  18.53703 0.81679 24.99057 1.21855 -4.3992*** 

Pesticide 25.98257 1.35978 26.41691 1.65223 -0.2049 

Input reduction based on VRS assumption 

Labor 15.27635 0.96036 4.66876 0.41128 10.1535*** 

Fertilizer 16.09904 0.92951 7.77435 0.80476 6.7708*** 

Land 13.52701 0.8153 4.36464 0.40618 10.0588*** 

Machine 14.23111 0.82954 4.52015 0.42476 10.4198*** 

Seed  13.52503 0.77846 5.07393 0.4651 9.3194*** 

Pesticide 19.81423 1.37216 12.56113 1.50899 3.5543*** 

*** denotes significant levels at 1%  

 

The estimation of efficiency results shows that all inefficient farmers are advised to 

reduce the use of inputs to make their farming efficient. Table 4 presents the percentage 

reductions for each input and the mean differences in the two farming systems, both irrigated 
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and rainfed. Under the CRS assumption on irrigated farming, the reduction of land, seeds, 

fertilizers, labor, machinery, and pesticides is 11.74%, 18.53%, 19.72%, 20.48%, and 25.98%, 

respectively. Under the CRS assumption in rainfed farming, the reduction of land, machinery, 

labor, seeds, pesticides, and fertilizers is 13.48%, 19.65%, 22.65%, 24.99%, and 26.41%, 

respectively. Based on the mean difference, the reduction of seed and fertilizer in rain-fed 

farming was significantly higher than the reduction of the two inputs in irrigated farming. At 

the same time, for the rest, there was no difference in the reduction of inputs in the two farming 

systems. 

The recommendation to reduce input is also seen in the VRS assumption. Under the 

VRS assumption on irrigated agriculture, the reduction in seeds, land, machinery, labor, 

fertilizers, and pesticides is 13.525%, 13.527%, 14.23%, 15.27%, 16.09 and 19.81%, 

respectively. Under the VRS assumption on rainfed agriculture, the reduction of land, 

machinery, labor, seeds, fertilizers, and pesticides is 4.36%, 4.52%, 4.66%, 5.07%, 7.77%, and 

12.56%, respectively. Based on the mean difference, all input reductions in rainfed agriculture 

were significantly lower than those in irrigated agriculture. The relatively small reduction in 

inputs for rainfed agriculture is likely due to the relatively high-efficiency score on the assumed 

VRS. 

 

Estimating the determinants of technical efficiency 

Our study investigates the determinants of rice farming efficiency based on three 

models: the regression model for all samples, irrigated farming, and rain-fed farming. The 

dependent variables in our study consisted of three types: TE CRS, TE VRS, and SE scores. 

However, the regression model we use is only efficiency based on the VRS assumption because 

this is the only regression model that passes for model fit. The log-likelihood statistics that 

determine the fit of the model show that the Tobit regression model using the dependent 

variable TE VRS can be applied with a significant chi-square (p-value) at the 1% and 5% levels. 

Furthermore, Table 5 presents each regression model's coefficients and marginal effects. We 

use the marginal effect because the parameter coefficients in the Tobit regression model cannot 

be directly interpreted; in other words, the value of the marginal effect can represent the 

magnitude of change between the dependent and independent variables. See Williams (2012) 

for more details about the benefits of marginal effects in non-linear regression models. Arouna 

& Dabbert (2010) uses the marginal effect to represent the magnitude of change between the 

independent variables and efficiency. 

 

Table 5. Determinants of rice farming efficiency 
Variable Irrigated farms (N=220) Rain-fed farms (N=180) All samples (N=400) 

Coefficient Marginal effect Coefficient Marginal effect Coefficient Marginal effect 

Age  0.00026 0.0151737 -0.00107** -0.0539288 -0.00003 -0.0019262 

Household size  0.00538 0.0028309 0.0035 0.0156015 0.00314 0.0153614 

Sex  0.03334 0.0315929 -0.01812 -0.0165522 0.01308 0.0121998 

Education  -0.00534 -0.064183 -0.00269** -0.0207979 -0.00104 -0.0104841 

Extension contact  0.00195 0.003738 -0.01119 -0.015321 -0.00236 -0.0039494 

Experience in farms group 0.00271** 0.0238437 -0.00011 -0.0012624 0.00082 0.0080749 

Access credit  -0.04600** -0.0096468 -0.01291 -0.003629 -0.0228** -0.0055059 

Farm experience  -0.00123 -0.0268005 .0006321 0.0136623 -0.00025 -0.0054304 

Irrigation     -0.07996*** -0.0501322 

Likelihood ratio chi square 15.93  18.63  86.83  
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p value chi square 0.0435**  0.0170**  0.0000***  

VIF 1.56  1.97  1.55  

***,** denotes significant levels at 1% and 5 % 

 

Two variables significantly affect the technical efficiency of rice farming based on each 

regression model during the observation period. The variables of experience following farmer 

groups and access to credit affect the technical efficiency of irrigated agriculture with a 

significant level of 95%. In contrast, the other six variables have no significant effect. The 

variables of age and education affect the technical efficiency of rain-fed agriculture with a 

significant level of 95%, while the other six variables have no significant effect. The variables 

of access to credit and irrigation affect the technical efficiency of rice farming with a significant 

level of 95% and 99%, while the other six variables have no significant effect. 

Based on the regression model for all sample farmers, we found that the irrigation 

variable harms the technical efficiency of rice farming. The average marginal effect for the 

irrigation variable is estimated at -0.05. This value implies that for farmers whose irrigation 

access increases by 1%, the efficiency of rice farming decreases by 0.05%. This finding 

contradicts irrigated farming being more efficient than rainfed farming. Field observations can 

explain the condition of access to irrigation. The only source of irrigation water is from the 

Ular River basin because the infrastructure of the other two dams is inadequate in distributing 

water. The volume of water in the river is very dependent on rainfall, which is when rainfall is 

high, then the water is distributed to agricultural land in large volumes. In contrast, low rainfall 

has the opposite effect. Other studies show that a shortage of irrigation water occurs during 

land preparation and the growth period, excess water during the rice harvest, and the amount 

of waste in the irrigation canals often faced by irrigated rice growers (Amalia, 2020; Nababan, 

2013). Farmers also responded to the uneven water distribution during rice cultivation when 

we interviewed them. Our observations and previous studies explain why access to irrigation 

negatively affects the efficiency of rice farming. Other studies show that the problem of 

relatively long distances to irrigation canals, high irrigation costs, and access to irrigation 

systems harms rice farming efficiency (Biswas et al., 2021; Kinkingninhoun-Mêdagbé et al., 

2010). Rainfed growers use shallow water, water from rivers, and ponds to overcome water 

scarcity (Biswas et al., 2021). In contrast, another study found that access to irrigation 

contributes positively to the technical efficiency of rice farming in Indonesia (Hakim et al., 

2021; Haryanto et al., 2015, 2016). 

Based on the regression model for all sample farmers and the regression model for 

irrigated farming, we found that access to credit significantly negatively affects the technical 

efficiency of rice farming. Our findings mean that non-borrowers are more efficient than 

borrowers. We found that only 17.7% are willing to access credit on irrigated agriculture and 

26.6% are willing to access credit on rainfed agriculture. Based on interviews with respondents, 

they stated that the interest on credit was too high and the requirements for applying for credit 

were too complicated, causing them to be unwilling to access credit. Furthermore, insufficient 

credit funds to purchase inputs impact input shortages, maximum output is not achieved, and 

reduced efficiency is the main reason the credit variable is negatively related to efficiency. 

According to Tenaye (2020), 66% of farmers use credit funds for consumption which causes 

credit to harm the technical efficiency of smallholder farmers in Ethiopia. Long et al. (2020) 
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also demonstrated a negative relationship between technical efficiency and credit constraints, 

while Anang et al. (2016) and Ojo & Baiyegunhi (2020) illustrated a positive relationship between 

credit and the technical efficiency of rice farming in Africa. 

We found a negative association with the following variables: age and rainfed farming 

efficiency. The average marginal effect for the estimated age variable is -0.001. This value 

indicates that the farmer's age increases by one year, causing a decrease in technical efficiency 

of 0.001%. Physical solid abilities are needed in the agricultural business (Seok et al., 2018). 

Decreased aerobic and musculoskeletal capacity in workers aged between 40 and 60 years 

causes a decrease in physical work capacity of an average of 20% (Kenny et al., 2008). The 

average age of the head of the household is 47 years, indicating a decrease in physical work 

capacity, which impacts the productivity and efficiency of rainfed rice farming. In addition to 

declining physical abilities, old farmers dare not take risks in innovation or adopt new farming 

techniques (Ojo & Baiyegunhi, 2020). This finding aligns with the study of Seok et al. (2018) and 

Ojo & Baiyegunhi (2020). In contrast, another study found a positive relationship between age 

and farming technical efficiency (Anang et al., 2016; Tenaye, 2020). However, both studies 

agree that the older age of growers makes them less willing to adopt new technologies and 

avoid risks. 

The final variables we found a negative association with were education and rainfed 

farming efficiency. The average marginal effect for the estimated age variable is -0.00269. This 

value indicates that the formal education of farmers, which increases by one year, causes a 

decrease in technical efficiency of 0.00269%. The average formal education of farmers is 

elementary school graduates. Workers who had only graduated from elementary school could 

not find work in the city, so they returned to the village to work in the agricultural sector. They 

will learn and dare to take risks to increase production and income from agriculture because 

this activity is the source of their livelihood—this reason why low education has the potential 

to increase technical efficiency. Anang et al. (2017) 's findings align with our study, in which 

educated farmers are more likely to be involved in non-agricultural employment opportunities, 

which can reduce the time they allocate for activities on the farm, resulting in low agricultural 

productivity. Tenaye (2020) found that education positively impacted agricultural efficiency, 

while Long et al. (2020) stated that education was unable to explain agricultural efficiency. 

Only the variable experience of participating in farmer groups positively impacts 

agricultural technical efficiency. The average marginal effect for the estimated variables is 

0.00271. This value means that the experience of participating in farmer groups increases by 

one year, so the technical efficiency of irrigated farming increases by 0.00271%. The logical 

reason is that their knowledge to apply new agricultural technologies increases when there is 

an exchange of information within farmer groups, and it is likely to have an impact on 

increasing agricultural productivity. Anang et al. (2017) and Ojo & Baiyegunhi (2020) also found 

that membership in farmer groups positively affected the efficiency of rice farming in Ghana 

and Nigeria. Another study found that membership in farmer groups harmed farming efficiency 

due to farmer groups' low interest in adopting new agricultural technologies (Anang et al., 

2020). 
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Conclusion  

Our study found TE CRS, TE VRS, and SE scores for all samples to be 0.818, 0.911, 

and 0.899, respectively. The results indicate an enormous scope to increase the TE of the 

respondents through improvement in input allocation at the farm level. Furthermore, we found 

irrigated agriculture to be more efficient than rainfed agriculture. These results indicate that 

irrigated agriculture is more efficient in allocating inputs than its competitors. 

Interestingly, we found that access to irrigation is negatively related to the efficiency of 

rice farming. Water scarcity in irrigated agriculture is likely due to the uneven distribution of 

water and the incompatibility of the water volume needed during rice growth and harvest. 

Unlike the case with rainfed agriculture, they have the expertise to overcome water scarcity by 

utilizing shallow water and making water-holding ponds. The negative relationship to the 

efficiency of rice farming is found in the variables of the age of the head of the household, 

education, and access to credit. However, what we found, in contrast, was a positive 

relationship between experience in joining farmer groups and farming efficiency. 

Based on the findings in this study, we provide several recommendations to 

policymakers so that they pay attention to increasing rice production in North Sumatra 

Province. The first recommendation is that policymakers allocate a budget to build and repair 

irrigation infrastructure and clean up waste in irrigation canals. The following recommendation 

is that policymakers must actively invite farmer group cooperation in terms of water 

management and maintenance of irrigation canals. The final recommendation is that 

policymakers need to invite formal financial institutions so that they reduce credit interest and 

ease the requirements for applying for credit. Policymakers must pay attention to these 

recommendations so that rice farming is sustainable and reduces rural poverty. 
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