Utilization of GeoAI Applications in the Health Sector: A Review

Authors

  • Anastasia Amponsah Petrozavodsk State University
  • Philia Latue Herzen University
  • Heinrich Rakuasa University of Indonesia

DOI:

https://doi.org/10.59653/jhsmt.v1i02.240

Keywords:

GeoAI, GIS, Geography, Public health

Abstract

This research describes the use of GeoAI, a geospatial data-based artificial intelligence, to improve the understanding and management of health in a global context. GeoAI enables the integration of geographic data such as maps, satellite images, and environmental information with artificial intelligence technology to analyze disease spread, health risk factors, and health resource management more accurately. This research uses a descriptive qualitative approach. The type of research used is a literature study. The literature review database used is by searching on Google Scholar, Scopus, and Google Book. The results of this study show that the basic concept of GeoAI involves more accurate spatial analysis, disease spread monitoring, disease outbreak prediction, and more efficient health resource management. However, challenges such as access to adequate data, lack of understanding among health professionals, and data privacy and security issues need to be addressed for GeoAI to be effectively implemented. In conclusion, GeoAI has great potential in improving public health and addressing global health challenges, but requires careful steps in its implementation.

Downloads

Download data is not yet available.

References

Abdul Muin, & H. R. (2023). Pemanfaatan Sistim Informasi Geografi Untuk Analisis Jarak Jangkauan Pelayanan Fasilitas Kesehatan di Kota Ambon. INSOLOGI: Jurnal Sains Dan Teknologi, 2(4), https://doi.org/10.55123/insologi.v2i4.2235.

Amjad, A., Kordel, P., & Fernandes, G. (2023). A Review on Innovation in Healthcare Sector (Telehealth) through Artificial Intelligence. Sustainability, 15(8), 6655. https://doi.org/10.3390/su15086655

Bellinger, C., Mohomed Jabbar, M. S., Zaïane, O., & Osornio-Vargas, A. (2017). A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health, 17(1), 907. https://doi.org/10.1186/s12889-017-4914-3

Davis, M., & Shanley, T. (2017). The Missing -Omes: Proposing Social and Environmental Nomenclature in Precision Medicine. Clinical and Translational Science, 10(2), 64–66. https://doi.org/10.1111/cts.12453

Del Mastro, A., Federico, M., Eremchenko, E., & Nelson, A. (2020). “Digital Health Earth”: towards a global healthcare management geolocating human health condition by means of space technology. Geocontext, 8(1), 52–71. https://doi.org/10.30987/2686-8326-2020-52-71

DeVerteuil, G. (2015). Conceptualizing violence for health and medical geography. Social Science & Medicine, 133, 216–222. https://doi.org/10.1016/j.socscimed.2015.01.018

Dicuonzo, G., Donofrio, F., Fusco, A., & Dell’Atti, V. (2021). Big data and artificial intelligence for health system sustainability: The case of Veneto Region. MANAGEMENT CONTROL, 1, 31–52. https://doi.org/10.3280/MACO2021-001-S1003

Hamilton, A. B., & Finley, E. P. (2019). Qualitative methods in implementation research: An introduction. Psychiatry Research, 280, 112516. https://doi.org/10.1016/j.psychres.2019.112516

Heinrich Rakuasa, Nadhi Sugandhi, Zainudin, Wulan Abdul Wahab, K. (2023). Aplikasi GAI Dan UAVs Untuk Analisis Korelasi Kepadatan Permukiman Dan LST Di Pulau Panggang DKI Jakarta. Larisa Penelitian Multidisiplin, 1(1), 31–35.

Ismail, A., Dede, M., & Widiawaty, M. A. (2020). Urbanisasi Dan HIV di Kota Bandung (Perspektif Geografi Kesehatan). Buletin Penelitian Kesehatan, 48(2), 139–146. https://doi.org/10.22435/bpk.v48i2.2921

Istepanian, R. S. H., & Al-Anzi, T. (2018). m-Health 2.0: New perspectives on mobile health, machine learning and big data analytics. Methods, 151, 34–40. https://doi.org/https://doi.org/10.1016/j.ymeth.2018.05.015

Janowicz, K., Sieber, R., & Crampton, J. (2022). GeoAI, counter-AI, and human geography: A conversation. Dialogues in Human Geography, 12(3), 446–458. https://doi.org/10.1177/20438206221132510

Jumadi, J., Fikriyah, V. N., Hadibasyir, H. Z., Sunariya, M. I. T., Priyono, K. D., Setiyadi, N. A., Carver, S. J., Norman, P. D., Malleson, N. S., Rohman, A., & Lotfata, A. (2022). Spatiotemporal Accessibility of COVID-19 Healthcare Facilities in Jakarta, Indonesia. Sustainability, 14(21), 14478. https://doi.org/10.3390/su142114478

Kamel Boulos, M. N., & Al-Shorbaji, N. M. (2014). On the Internet of Things, smart cities and the WHO Healthy Cities. International Journal of Health Geographics, 13(1), 10. https://doi.org/10.1186/1476-072X-13-10

Kamel Boulos, M. N., & Le Blond, J. (2016). On the road to personalised and precision geomedicine: medical geology and a renewed call for interdisciplinarity. International Journal of Health Geographics, 15(1), 5. https://doi.org/10.1186/s12942-016-0033-0

Kamel Boulos, M. N., Peng, G., & VoPham, T. (2019). An overview of GeoAI applications in health and healthcare. International Journal of Health Geographics, 18(1), 7. https://doi.org/10.1186/s12942-019-0171-2

Kaur, A., Garg, R., & Gupta, P. (2021). Challenges facing AI and Big data for Resource-poor Healthcare System. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), 1426–1433. https://doi.org/10.1109/ICESC51422.2021.9532955

Kjellstrom, T., Briggs, D., Freyberg, C., Lemke, B., Otto, M., & Hyatt, O. (2016). Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts. Annual Review of Public Health, 37(1), 97–112. https://doi.org/10.1146/annurev-publhealth-032315-021740

Kurniadi, D., Mulyani, A., Septiana, Y., & Akbar, G. G. (2019). Geographic information system for mapping public service location. Journal of Physics: Conference Series, 1402(2), 22073. https://doi.org/10.1088/1742-6596/1402/2/022073

Kurniawan, Y. I., Hanifa, A., Afuan, L., Fadli, A., & Aliim, M. S. (2023). Comparison of tuberculosis disease classification using support vector machine and Naive Bayes algorithm. AIP Conference Proceedings 21 February 2023, 030002. https://doi.org/10.1063/5.0110987

Latue, P. C., Manakane, S. E., & Rakuasa, H. (2023a). Analisis Perkembangan Kepadatan Permukiman di Kota Ambon Tahun 2013 dan 2023 Menggunakan Metode Kernel Density. Blend Sains Jurnal Teknik, 2(1), 26–34. https://doi.org/https://doi.org/10.56211/blendsains.v2i1.272

Latue, P. C., Manakane, S. E., & Rakuasa, H. (2023b). Utilization of Meso-scale Weather Models in Urban Development Policy and Planning: A Review. Sinergi International Journal of Economics, 1(2), 56–63. https://doi.org/https://doi.org/10.61194/economics.v1i2.68

Manakane, S. E., Latue, P. C., Somae, G., & Rakuasa, H. (2023). Flood Risk Modeling in Buru Island, Maluku Province, Indonesia using Google Earth Engine: Pemodelan Risiko Banjir di Pulau Buru, Provinsi Maluku, Indonesia dengan menggunakan Mesin Google Earth. MULTIPLE: Journal of Global and Multidisciplinary, 1(2), 80–87.

McAllister, K., Mechanic, L. E., Amos, C., Aschard, H., Blair, I. A., Chatterjee, N., Conti, D., Gauderman, W. J., Hsu, L., Hutter, C. M., Jankowska, M. M., Kerr, J., Kraft, P., Montgomery, S. B., Mukherjee, B., Papanicolaou, G. J., Patel, C. J., Ritchie, M. D., Ritz, B. R., … on behalf of workshop participants. (2017). Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases. American Journal of Epidemiology, 186(7), 753–761. https://doi.org/10.1093/aje/kwx227

Mesko, B. (2017). The role of artificial intelligence in precision medicine. Expert Review of Precision Medicine and Drug Development, 2(5), 239–241. https://doi.org/10.1080/23808993.2017.1380516

Misslin, R., Telle, O., Daudé, E., Vaguet, A., & Paul, R. E. (2016). Urban climate versus global climate change-what makes the difference for dengue? Annals of the New York Academy of Sciences, 1382(1), 56–72. https://doi.org/10.1111/nyas.13084

Mohr, D. C., Zhang, M., & Schueller, S. M. (2017). Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annual Review of Clinical Psychology, 13(1), 23–47. https://doi.org/10.1146/annurev-clinpsy-032816-044949

Muin, A., & Rakuasa, H. (2023). Pemanfaat Geographic Artificial Intelligence (Geo-AI) Untuk Identifikasi Daerah Rawan Banjir Di Kota Ambon. Gudang Jurnal Multidisiplin Ilmu, 1(2), 58-63. https://doi.org/https://doi.org/10.59435/gjmi.v1i2.24

Mullachery, B., & Alismail, S. (2023). A Smart Healthcare Framework: Opportunities for Integrating Emerging Technologies (5G, IoT, AI, and GIS). In K. Arai (Ed.), Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3 (pp. 325–340). Springer International Publishing.

Nuraini, N., Fauzi, I. S., Fakhruddin, M., Sopaheluwakan, A., & Soewono, E. (2021). Climate-based dengue model in Semarang, Indonesia: Predictions and descriptive analysis. Infectious Disease Modelling, 6, 598–611. https://doi.org/10.1016/j.idm.2021.03.005

Oliveira, M. A. de, Ribeiro, H., & Castillo-Salgado, C. (2013). Geospatial analysis applied to epidemiological studies of dengue : a systematic review Análise geoespacial aplicada em. Rev Bras Epidemiol, 16(4), 907–917.

P. S. Chauhan, L., & Shekhar, S. (2021). GeoAI – Accelerating a Virtuous Cycle between AI and Geo. 2021 Thirteenth International Conference on Contemporary Computing (IC3-2021), 355–370. https://doi.org/10.1145/3474124.3474179

Pertuak, A. C., Latue, P., & Rakuasa, H. (2023). Spatial Approach in Health Predicting the Spread of Infectious Disease Incidence Rates (Malaria & COVID-19) in Ambon City, Indonesia, A Review. Journal of Health Science and Medical Therapy, 1(02), 38–48. https://doi.org/10.59653/jhsmt.v1i02.234

Rahmanti, Annisa Ristya, and A. K. N. P. (2012). Sistem informasi geografis: Trend pemanfaatan teknologi informasi untuk bidang terkait kesehatan. In Seminar Nasional Informatika Medis (SNIMed), 6–12.

Rakuasa, H., & Latue, P. C. (2023). Monitoring Urban Sprawl in Ambon City Using Google Earth Engine: Memantau Urban Sprawl di Kota Ambon Menggunakan Mesin Google Earth. MULTIPLE: Journal of Global and Multidisciplinary, 1(2), 88–100.

Rakuasa, H., Tambunan, M. P., & Tambunan, R. P. (2021). Analisis Sebaran Spasial Tingkat Kejadian Kasus Covid-19 Dengan Metode Kernel Density di Kota Ambon. Jurnal Geografi: Media Informasi Pengembangan Dan Profesi Kegeografian, 18(2), 76–82. https://doi.org/https://doi.org/10.15294/jg.v18i2.28234

Rejeki, D. S. S., Nurlaela, S., Octaviana, D., Wijayanto, B., & Solikhah, S. (2022). Clusters of malaria cases at sub-district level in endemic area in Java Island, Indonesia. Geospatial Health, 17(1). https://doi.org/10.4081/gh.2022.1048

Roller, M. R. (2019). A quality approach to qualitative content analysis: Similarities and differences compared to other qualitative methods. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 20(9), 1–21. https://doi.org/https://doi.org/10.17169/fqs-20.3.3385

Rusdi, I., Keliat, B., Hariyati, R. T., & Sucahyo, Y. (2022). Exploration of the Need for Nursing Human Resources Information Systems for Geographical Mapping of Nurses: A Qualitative Study. Indonesian Journal of Global Health Research, 4(2), 269–280. https://doi.org/10.37287/ijghr.v4i2.1005

Sambodo, N. P., Van Doorslaer, E., Pradhan, M., & Sparrow, R. (2021). Does geographic spending variation exacerbate healthcare benefit inequality? A benefit incidence analysis for Indonesia. Health Policy and Planning, 36(7), 1129–1139. https://doi.org/10.1093/heapol/czab015

Surendra, H., Paramita, D., Arista, N. N., Putri, A. I., Siregar, A. A., Puspaningrum, E., Rosylin, L., Gardera, D., Girianna, M., & Elyazar, I. R. F. (2023). Geographical variations and district-level factors associated with COVID-19 mortality in Indonesia: a nationwide ecological study. BMC Public Health, 23(1), 103. https://doi.org/10.1186/s12889-023-15015-0

Susan E Manakane, Philia Christi Latue, Glendy Somae, H. R. (2023). The Role of Geography Research in Supporting Sustainable Development in Ambon City, Indonesia: A Review. Sinergi International Journal of Economics, 1(2), 64–75. https://doi.org/https://doi.org/10.61194/economics.v1i2.67

Tagde, P., Tagde, S., Bhattacharya, T., Tagde, P., Chopra, H., Akter, R., Kaushik, D., & Rahman, M. H. (2021). Blockchain and artificial intelligence technology in e-Health. Environmental Science and Pollution Research, 28(38), 52810–52831. https://doi.org/10.1007/s11356-021-16223-0

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

VoPham, T., Hart, J. E., Laden, F., & Chiang, Y.-Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environmental Health, 17(1), 40. https://doi.org/10.1186/s12940-018-0386-x

Vrijheid, M. (2014). The exposome: a new paradigm to study the impact of environment on health. Thorax, 69(9), 876–878. https://doi.org/10.1136/thoraxjnl-2013-204949

Downloads

Published

2023-09-14

How to Cite

Amponsah, A., Latue, P., & Rakuasa, H. (2023). Utilization of GeoAI Applications in the Health Sector: A Review. Journal of Health Science and Medical Therapy, 1(02), 49–60. https://doi.org/10.59653/jhsmt.v1i02.240