Bacteriophage Therapy Against Antimicrobial Resistant Crisis
DOI:
https://doi.org/10.59653/jhsmt.v2i01.318Keywords:
Antibiotic Resistance, Phage Replication Mechanisms, Bacteriophage Therapy, Phage Therapy Safety and Specificity., Antimicrobial Resistance CrisisAbstract
The most common virus on the earth is bacteriophage (or phages) that are present in all organisms. Their classification is currently being evaluated based on the phage's unique and antibacterial properties. The phage replicates within the host through a lytic or lysogenic process following infection and use of a bacterial cell machine. Phage has become an effective therapeutic drug against pathogens after twort and Filex d'Herelle discovery of bacteriophage in the 1900s, and subsequent research has been conducted. Nevertheless, bacteriophage therapy has become an unavoidable option for research due to the recent occurrence of bacterial antibiotics resistance. Around fifty years after antibiotic were found, antibiotics resistance is key risk for health care. Antimicrobial resistance is a rising big issue in global healthcare. The WHO, 1st report on antimicrobial resistances globally, has emphasized the threat of a forthcoming post antibiotics age, where little infection could be not treatable and once again will be fatal. Considering the present condition, producing therapeutic agent that are complementary to antibiotics play great role to fight against antibiotic resistance. The crisis requires development and implementation of new therapeutic agents against infections and phage therapy is suitable to control infectious diseases because safety of phage therapy. There is a perception with regards to phage therapy that phages are usually safe, on the bases of fact that they are ubiquitous in nature and our continued contact to phages in the environment and furthermore that they are widely used without adverse effects in many of the world. with this positive interpretation, the application of phage therapy must be verified by current research studies. bacteriophage preparations contain detrimental substances, such as toxins of gram-negative bacteria, during the formulation process of bacteriophage and that can be remove by different purification methods. Phages effects normal flora GIT negligibly due to specificity in nature and they infect only a small number of bacterial species.
Downloads
References
Abedon, S. (2017). Bacteriophage clinical use as antibacterial “drugs”: utility and precedent. Microbiol. Spectr. 5: BAD-0003-2016. doi: 10.1128/microbiolspec. Retrieved from DOI: https://doi.org/10.1128/microbiolspec.BAD-0003-2016
Abedon, S. T. (2017). Information phage therapy research should report. Pharmaceuticals, 10(2), 43. DOI: https://doi.org/10.3390/ph10020043
Abedon, S. T. (2018). Phage therapy: Various perspectives on how to improve the art. In Host-Pathogen Interactions (pp. 113-127): Springer. DOI: https://doi.org/10.1007/978-1-4939-7604-1_11
Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66-85. DOI: https://doi.org/10.4161/bact.1.2.15845
Abedon, S. T., & Thomas-Abedon, C. (2010). Phage therapy pharmacology. Current pharmaceutical biotechnology, 11(1), 28-47. DOI: https://doi.org/10.2174/138920110790725410
Alisky, J., Iczkowski, K., Rapoport, A., & Troitsky, N. (1998). Bacteriophages show promise as antimicrobial agents. Journal of Infection, 36(1), 5-15. DOI: https://doi.org/10.1016/S0163-4453(98)92874-2
Altamirano, F. L. G., & Barr, J. J. (2019). Phage therapy in the postantibiotic era. Clinical microbiology reviews, 32(2). DOI: https://doi.org/10.1128/CMR.00066-18
Aslanov, B., Lubimova, A., Dolgiy, A., & Pshenichnaya, N. (2018). Bacteriophages for the control of Klebsiella outbreak in the neonatal intensive care unit. International Journal of Infectious Diseases, 73, 295. DOI: https://doi.org/10.1016/j.ijid.2018.04.4087
Azeredo, J., & Sillankorva, S. (2018). Bacteriophage Therapy: Springer. DOI: https://doi.org/10.1007/978-1-4939-7395-8
Barrow, P. A., & Soothill, J. S. (1997). Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends in microbiology, 5(7), 268-271. DOI: https://doi.org/10.1016/S0966-842X(97)01054-8
Bruynoghe, R., & Maisin, J. (1921). Essais de thérapeutique au moyen du bacteriophage. CR Soc Biol, 85, 1120-1121.
Campbell, A. (2003). The future of bacteriophage biology. Nature Reviews Genetics, 4(6), 471-477. DOI: https://doi.org/10.1038/nrg1089
Chan, B. K., Abedon, S. T., & Loc-Carrillo, C. (2013). Phage cocktails and the future of phage therapy. Future microbiology, 8(6), 769-783. DOI: https://doi.org/10.2217/fmb.13.47
Cisek, A. A., Dąbrowska, I., Gregorczyk, K. P., & Wyżewski, Z. (2017). Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Current microbiology, 74(2), 277-283. DOI: https://doi.org/10.1007/s00284-016-1166-x
Clark, J. R. (2015). Bacteriophage therapy: history and future prospects. Future Virology, 10(4), 449-461. DOI: https://doi.org/10.2217/fvl.15.3
Czaplewski, L., Bax, R., Clokie, M., Dawson, M., Fairhead, H., Fischetti, V. A., . . . Harper, D. Alternatives to antibiotics–a pipeline portfolio.
D’Costa, V., & King, C. (2011). Kalan, l. Morar, M., Sung, WWL, Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, GB, Poinar, HN & Wright, GD, 457-461. DOI: https://doi.org/10.1038/nature10388
Dalmasso, M., Hill, C., & Ross, R. P. (2014). Exploiting gut bacteriophages for human health. Trends in microbiology, 22(7), 399-405. DOI: https://doi.org/10.1016/j.tim.2014.02.010
de Jonge, P. A., Nobrega, F. L., Brouns, S. J., & Dutilh, B. E. (2019). Molecular and evolutionary determinants of bacteriophage host range. Trends in microbiology, 27(1), 51-63. DOI: https://doi.org/10.1016/j.tim.2018.08.006
Ding, C., & He, J. (2010). Effect of antibiotics in the environment on microbial populations. Applied Microbiology and Biotechnology, 87(3), 925-941. DOI: https://doi.org/10.1007/s00253-010-2649-5
Dondorp, A. M., Fairhurst, R. M., Slutsker, L., MacArthur, J. R., MD, J. G. B., Guerin, P. J., . . . Plowe, C. V. (2011). The threat of artemisinin-resistant malaria. New England Journal of Medicine, 365(12), 1073-1075. DOI: https://doi.org/10.1056/NEJMp1108322
Duckworth, D. H. (1976). " Who discovered bacteriophage?". Bacteriological reviews, 40(4), 793. DOI: https://doi.org/10.1128/br.40.4.793-802.1976
Dufour, N., Delattre, R., Ricard, J.-D., & Debarbieux, L. (2017). The lysis of pathogenic Escherichia coli by bacteriophages releases less endotoxin than by β-lactams. Clinical infectious diseases, 64(11), 1582-1588. DOI: https://doi.org/10.1093/cid/cix184
Fadlallah, A., Chelala, E., & Legeais, J.-M. (2015). Corneal infection therapy with topical bacteriophage administration. The open ophthalmology journal, 9, 167. DOI: https://doi.org/10.2174/1874364101509010167
Fauconnier, A. (2018). Guidelines for bacteriophage product certification. In Bacteriophage Therapy (pp. 253-268): Springer. DOI: https://doi.org/10.1007/978-1-4939-7395-8_19
Fish, R., Kutter, E., Wheat, G., Blasdel, B., Kutateladze, M., & Kuhl, S. (2016). Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. Journal of wound care, 25(Sup7), S27-S33. DOI: https://doi.org/10.12968/jowc.2016.25.Sup7.S27
Gill, J. J., & Hyman, P. (2010). Phage choice, isolation, and preparation for phage therapy. Current pharmaceutical biotechnology, 11(1), 2-14. DOI: https://doi.org/10.2174/138920110790725311
Goodridge, L. D. (2010). Designing phage therapeutics. Current pharmaceutical biotechnology, 11(1), 15-27. DOI: https://doi.org/10.2174/138920110790725348
Green, J. L., Holmes, A. J., Westoby, M., Oliver, I., Briscoe, D., Dangerfield, M., . . . Beattie, A. J. (2004). Spatial scaling of microbial eukaryote diversity. Nature, 432(7018), 747-750. DOI: https://doi.org/10.1038/nature03034
Harper, D. R. (2018). Criteria for selecting suitable infectious diseases for phage therapy. Viruses, 10(4), 177. DOI: https://doi.org/10.3390/v10040177
Henein, A. (2013). What are the limitations on the wider therapeutic use of phage? Bacteriophage, 3(2), e24872. DOI: https://doi.org/10.4161/bact.24872
Kakasis, A., & Panitsa, G. (2019). Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International journal of antimicrobial agents, 53(1), 16-21. DOI: https://doi.org/10.1016/j.ijantimicag.2018.09.004
Keen, E. C. (2015). A century of phage research: bacteriophages and the shaping of modern biology. Bioessays, 37(1), 6-9. DOI: https://doi.org/10.1002/bies.201400152
Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell host & microbe, 25(2), 219-232. DOI: https://doi.org/10.1016/j.chom.2019.01.014
Kramberger, P., Honour, R. C., Herman, R. E., Smrekar, F., & Peterka, M. (2010). Purification of the Staphylococcus aureus bacteriophages VDX-10 on methacrylate monoliths. Journal of virological methods, 166(1-2), 60-64. DOI: https://doi.org/10.1016/j.jviromet.2010.02.020
Krylov, V. (2001). Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika, 37(7), 869. DOI: https://doi.org/10.1023/A:1016716606135
Kutateladze, M., & Adamia, R. (2010). Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends in biotechnology, 28(12), 591-595. DOI: https://doi.org/10.1016/j.tibtech.2010.08.001
Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. (2010). Bacteriophage therapy of venous leg ulcers in humans: Results of a phase I safety trial. Curr. Pharm. Biotechnol, 11, 69-86.
Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. T. (2010). Phage therapy in clinical practice: treatment of human infections. Current pharmaceutical biotechnology, 11(1), 69-86. DOI: https://doi.org/10.2174/138920110790725401
Kutter, E., & Sulakvelidze, A. (2004). Bacteriophages: biology and applications: Crc press. DOI: https://doi.org/10.1201/9780203491751
Latz, S., Wahida, A., Arif, A., Häfner, H., Hoß, M., Ritter, K., & Horz, H. P. (2016). Preliminary survey of local bacteriophages with lytic activity against multi‐drug resistant bacteria. Journal of basic microbiology, 56(10), 1117-1123. DOI: https://doi.org/10.1002/jobm.201600108
Lehmann, P. F. (1999). PR Murray, EJ Baron, MA Pfaller, FC Tenover and RH Yolken, eds. Manual of Clinical Microbiology. Mycopathologia, 146(2), 107. DOI: https://doi.org/10.1023/A:1007025717379
Letkiewicz, S., Międzybrodzki, R., Fortuna, W., Weber-Dąbrowska, B., & Górski, A. (2009). Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis—case report. Folia microbiologica, 54(5), 457. DOI: https://doi.org/10.1007/s12223-009-0064-z
Loc-Carrillo, C., & Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1(2), 111-114. DOI: https://doi.org/10.4161/bact.1.2.14590
Malik, D. J., Sokolov, I. J., Vinner, G. K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G. T., . . . Kirpichnikova, A. (2017). Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in colloid and interface science, 249, 100-133. DOI: https://doi.org/10.1016/j.cis.2017.05.014
Mattila, S., Ruotsalainen, P., & Jalasvuori, M. (2015). On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Frontiers in microbiology, 6, 1271. DOI: https://doi.org/10.3389/fmicb.2015.01271
Mazel, D. (2004). Integrons and the origin of antibiotic resistance gene cassettes. ASM News-American Society for Microbiology, 70, 520-525.
Merabishvili, M., Pirnay, J.-P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., . . . Van Parys, L. (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PloS one, 4(3), e4944. DOI: https://doi.org/10.1371/journal.pone.0004944
Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S., & Adhya, S. (1996). Long-circulating bacteriophage as antibacterial agents. Proceedings of the National Academy of Sciences, 93(8), 3188-3192. DOI: https://doi.org/10.1073/pnas.93.8.3188
Michael, C. A., Dominey-Howes, D., & Labbate, M. (2014). The antimicrobial resistance crisis: causes, consequences, and management. Frontiers in public health, 2, 145. DOI: https://doi.org/10.3389/fpubh.2014.00145
Millard, A. D., Clokie, M. R., Letarov, A. V., & Heaphy, S. (2011). Phages in nature. Bacteriophage, 1, 31-45. DOI: https://doi.org/10.4161/bact.1.1.14942
Moellering Jr, R. C. (2011). Discovering new antimicrobial agents. International journal of antimicrobial agents, 37(1), 2-9. DOI: https://doi.org/10.1016/j.ijantimicag.2010.08.018
Monsur, K., Rahman, M., Huq, F., Islam, M., Northrup, R., & Hirschhorn, N. (1970). Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera. Bulletin of the World Health Organization, 42(5), 723.
Nelson, D. C., Schmelcher, M., Rodriguez-Rubio, L., Klumpp, J., Pritchard, D. G., Dong, S., & Donovan, D. M. (2012). Endolysins as antimicrobials. In Advances in virus research (Vol. 83, pp. 299-365): Elsevier. DOI: https://doi.org/10.1016/B978-0-12-394438-2.00007-4
Nir-Paz, R., Gelman, D., Khouri, A., Sisson, B. M., Fackler, J., Alkalay-Oren, S., . . . Bader, R. (2019). Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clinical infectious diseases, 69(11), 2015-2018. DOI: https://doi.org/10.1093/cid/ciz222
Parracho, H. M., Burrowes, B. H., Enright, M. C., McConville, M. L., & Harper, D. R. (2012). The role of regulated clinical trials in the development of bacteriophage therapeutics. Journal of molecular and genetic medicine: an international journal of biomedical research, 6, 279. DOI: https://doi.org/10.4172/1747-0862.1000050
Payne, R. J., & Jansen, V. A. (2000). Phage therapy: the peculiar kinetics of self‐replicating pharmaceuticals. Clinical pharmacology & therapeutics, 68(3), 225-230. DOI: https://doi.org/10.1067/mcp.2000.109520
Payne, R. J., & Jansen, V. A. (2003). Pharmacokinetic principles of bacteriophage therapy. Clinical pharmacokinetics, 42(4), 315-325. DOI: https://doi.org/10.2165/00003088-200342040-00002
Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J., & Lu, T. K. (2016). Genetically engineered phages: a review of advances over the last decade. Microbiology and Molecular Biology Reviews, 80(3), 523-543. DOI: https://doi.org/10.1128/MMBR.00069-15
Pirnay, J.-P., Blasdel, B. G., Bretaudeau, L., Buckling, A., Chanishvili, N., Clark, J. R., . . . De Vos, D. (2015). Quality and safety requirements for sustainable phage therapy products. Pharmaceutical research, 32(7), 2173-2179. DOI: https://doi.org/10.1007/s11095-014-1617-7
Pirnay, J.-P., Merabishvili, M., Van Raemdonck, H., De Vos, D., & Verbeken, G. (2018). Bacteriophage production in compliance with regulatory requirements. In Bacteriophage therapy (pp. 233-252): Springer. DOI: https://doi.org/10.1007/978-1-4939-7395-8_18
Prevention, E. C. f. D., & Control. (2016). Summary of the latest data on antibiotic resistance in the European Union. In: ECDC Stockholm.
Projan, S. J. (2003). Why is big Pharma getting out of antibacterial drug discovery? Current opinion in microbiology, 6(5), 427-430. DOI: https://doi.org/10.1016/j.mib.2003.08.003
Rashmi, S., Chaman, L., & Bhuvneshwar, K. (2005). Antibacterial resistance: current problems and possible solutions. Indian J. Med. Sci, 59, 120-129. DOI: https://doi.org/10.4103/0019-5359.15091
Rhoads, D., Wolcott, R., Kuskowski, M., Wolcott, B., Ward, L., & Sulakvelidze, A. (2009). Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. Journal of wound care, 18(6), 237-243. DOI: https://doi.org/10.12968/jowc.2009.18.6.42801
Samsygina, G., & Boni, E. (1984). Bacteriophages and phage therapy in pediatric practice. Pediatriia(4), 67.
Sharp, R. (2001). Bacteriophages: biology and history. Journal of Chemical Technology & Biotechnology, 76(7), 667-672. DOI: https://doi.org/10.1002/jctb.434
Skurnik, M., Pajunen, M., & Kiljunen, S. (2007). Biotechnological challenges of phage therapy. Biotechnology letters, 29(7), 995-1003. DOI: https://doi.org/10.1007/s10529-007-9346-1
Speck, P., & Smithyman, A. (2016). Safety and efficacy of phage therapy via the intravenous route. FEMS microbiology letters, 363(3). DOI: https://doi.org/10.1093/femsle/fnv242
Sulakvelidze, A., Alavidze, Z., & Morris, J. G. (2001). Bacteriophage therapy. Antimicrobial agents and chemotherapy, 45(3), 649-659. DOI: https://doi.org/10.1128/AAC.45.3.649-659.2001
Sulakvelidze, A., & Barrow, P. (2005). Phage therapy in animals and agribusiness. Bacteriophages: biology and applications, 335-380. DOI: https://doi.org/10.1201/9780203491751.ch13
Summers, W. C. (1999). Felix dHerelle and the origins of molecular biology: Yale University Press.
Sykes, R. (2010). The 2009 Garrod lecture: the evolution of antimicrobial resistance: a Darwinian perspective. Journal of Antimicrobial Chemotherapy, 65(9), 1842-1852. DOI: https://doi.org/10.1093/jac/dkq217
Twort, F. (1920). Researches on dysentery. British journal of experimental pathology, 1(5), 237.
Van Helvoort, T. (1992). Bacteriological and physiological research styles in the early controversy on the nature of the bacteriophage phenomenon. Medical History, 36(3), 243-270. DOI: https://doi.org/10.1017/S0025727300055265
Vandenheuvel, D., Lavigne, R., & Brüssow, H. (2015). Bacteriophage therapy: advances in formulation strategies and human clinical trials. Annual review of virology, 2, 599-618. DOI: https://doi.org/10.1146/annurev-virology-100114-054915
Viertel, T. M., Ritter, K., & Horz, H.-P. (2014). Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. Journal of Antimicrobial Chemotherapy, 69(9), 2326-2336. DOI: https://doi.org/10.1093/jac/dku173
Villarroel, J., Larsen, M. V., Kilstrup, M., & Nielsen, M. (2017). Metagenomic analysis of therapeutic PYO phage cocktails from 1997 to 2014. Viruses, 9(11), 328. DOI: https://doi.org/10.3390/v9110328
Weber-Dąbrowska, B., Jończyk-Matysiak, E., Żaczek, M., Łobocka, M., Łusiak-Szelachowska, M., & Górski, A. (2016). Bacteriophage procurement for therapeutic purposes. Frontiers in microbiology, 7, 1177. DOI: https://doi.org/10.3389/fmicb.2016.01177
Whitman, W. B., Coleman, D. C., & Wiebe, W. J. (1998). Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, 95(12), 6578-6583. DOI: https://doi.org/10.1073/pnas.95.12.6578
Wright, A., Hawkins, C., Änggård, E., & Harper, D. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic‐resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical otolaryngology, 34(4), 349-357. DOI: https://doi.org/10.1111/j.1749-4486.2009.01973.x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Fahim Ullah, Syed Sohail Ahmad, Mazhar Ali Khan, Sarwat Moon

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).