Global Strategies in Fraud Prevention and Detection: A Systematic Review

Authors

  • Tussi Sulistyowati Universitas 17 Agustus 1945 Surabaya, Indonesia
  • Maria Yovita R Pandin Universitas 17 Agustus 1945 Surabaya, Indonesia
  • Amiartuti Kusmaningtyas Universitas 17 Agustus 1945 Surabaya, Indonesia

DOI:

https://doi.org/10.59653/pancasila.v3i03.1774

Keywords:

Fraud Prevention, Fraud Detection, Systematic Review, Artificial Intelligence, Internal Control

Abstract

This study used a qualitative descriptive design of a systematic review of Scopus-indexed journals on fraud detection and prevention from 2021-2025, and the result was 39 relevant articles. The results highlight that fraud prevention and detection both require a harmonized approach through internal auditing, internal controls, technology solutions, and organizational factors like leadership and professional skepticism. The use of sophisticated technologies such as machine learning, deep learning, and big data analytics significantly enhances detection capabilities, especially in the case of financial transactions. Besides internal control systems, auditor skills, and whistleblower systems, there are also significant roles to be played. Ethical concerns, such as privacy and transparency issues within AI-driven systems, have been noticed as well. Managerial implications consist of keeping organizational internal controls robust, utilizing technological tools, and encouraging a culture of skepticism as well as ethical governance. Future research may focus on the long-term effectiveness of these methods, such as ethical considerations in AI, sectoral applications, and the cost-effectiveness of implementing these solutions in resource-constrained environments.

Downloads

Download data is not yet available.

References

Achmad, T., Huang, C.-Y., Putra, M. A., & Pamungkas, I. D. (2024). Forensic Accounting and Risk Management: Exploring the Impact of Generalized Audit Software and Whistleblowing Systems on Fraud Detection in Indonesia. Journal of Risk and Financial Management, 17(12). https://doi.org/10.3390/jrfm17120573

Acree, M. C. (2021). Origin of the Modern Concept of Probability. In the Myth of Statistical Inference (pp. 79–116). Springer International Publishing. https://doi.org/10.1007/978-3-030-73257-8_3

Al-Hashedi, K. G., & Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40, 100402. https://doi.org/10.1016/j.cosrev.2021.100402

Ali, M. M., & Mohd Zaharon, N. F. (2024). Phishing—A Cyber Fraud: The Types, Implications and Governance. International Journal of Educational Reform, 33(1), 101–121. https://doi.org/10.1177/10567879221082966

Amankwah-Amoah, J., Khan, Z., Wood, G., & Knight, G. (2021). COVID-19 and digitalization: The great acceleration. Journal of Business Research, 136, 602–611. https://doi.org/10.1016/j.jbusres.2021.08.011

Anwar, K., Sulistyowati, T., Pardosi, P., Frimayasa, A., & Fitria, N. (2025). Research on Market Competition and Firm Performance: A Systematic Literature Review (2020–2024). Indonesia Journal of Engineering and Education Technology, 3(1).

Aslam, F., Hunjra, A. I., Ftiti, Z., Louhichi, W., & Shams, T. (2022). Insurance fraud detection: Evidence from artificial intelligence and machine learning. Research in International Business and Finance, 62. https://doi.org/10.1016/j.ribaf.2022.101744

Baesens, B., Höppner, S., & Verdonck, T. (2021). Data engineering for fraud detection. Decision Support Systems, 150. https://doi.org/10.1016/j.dss.2021.113492

Baumgärtler, T., Eudelle, P., & Cano, J. G. (2024). An international analysis of fraud detection in European structural and investment funds. European Journal of International Management, 22(2), 198–229. https://doi.org/10.1504/EJIM.2024.135943

Benligiray, S., Onay, A., & Yaşli Şen, F. (2025). Is fraud detection feasible without training data? Testing an expert-based approach. Journal of Business Economics and Management, 26(1), 210–230. https://doi.org/10.3846/jbem.2025.23443

Chen, L., Jia, N., Zhao, H., Kang, Y., Deng, J., & Ma, S. (2022). Refined analysis and a hierarchical multi-task learning approach for loan fraud detection. Journal of Management Science and Engineering, 7(4), 589–607. https://doi.org/10.1016/j.jmse.2022.06.001

Cholakov, G., & Stoyanova-Doycheva, A. (2024). Extending Fraud Detection in Students Exams Using AI. TEM Journal, 13(4), 3068–3078. https://doi.org/10.18421/TEM134-41

Damayanti, N. N. S. R., & Agustia, D. (2024). Organizational commitment, religiosity, and auditors’ responsibility for fraud detection. International Journal of Management and Sustainability, 13(1), 14–25. https://doi.org/10.18488/11.v13i1.3589

Detthamrong, U., Chansanam, W., Boongoen, T., & Iam-On, N. (2024). Enhancing Fraud Detection in Banking using Advanced Machine Learning Techniques. International Journal of Economics and Financial Issues, 14(5), 177–184. https://doi.org/10.32479/ijefi.16613

Farbmacher, H., Löw, L., & Spindler, M. (2022). An explainable attention network for fraud detection in claims management. Journal of Econometrics, 228(2), 244–258. https://doi.org/10.1016/j.jeconom.2020.05.021

Gabrielli, G., Magri, C., Medioli, A., & Marchini, P. L. (2024). The power of big data affordances to reshape anti-fraud strategies. Technological Forecasting and Social Change, 205. https://doi.org/10.1016/j.techfore.2024.123507

Gabudeanu, L., Brici, I., Mare, C., Mihai, I. C., & Scheau, M. C. (2021). Privacy intrusiveness in financial-banking fraud detection. Risks, 9(6). https://doi.org/10.3390/risks9060104

Ghrib, T., Khaldi, Y., Pandey, P. S., & Abusal, Y. A. (2024). Advanced fraud detection in card-based financial systems using a bidirectional lstm-gru ensemble model. Applied Computer Science, 20(3), 51–66. https://doi.org/10.35784/acs-2024-28

Gottschalk, P., & Hamerton, C. (2025). Comparative Fraud Authority Convenience and Public Trust. In Economic Crime and Conceptions of Trust (pp. 159–182). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-82315-2_7

Haliah, Hasan, H., Syamsuddin, Fatmawati, Dewi, A. R. S., Oemar, M. A. F. I., & Razak, L. A. (2025). The effect of political will, information technology, and the quality of financial reporting information on fraud prevention. Public and Municipal Finance, 14(1), 13–22. https://doi.org/10.21511/pmf.14(1).2025.02

Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert Systems with Applications, 193, 116429. https://doi.org/10.1016/j.eswa.2021.116429

Joseph, C., Utami, I., Madi, N., Rahmat, M., Janang, J. T., & Omar, N. H. (2021). A comparison of online fraud prevention disclosure in Malaysian and Indonesian public universities. Management and Accounting Review, 20(2), 59–83. https://doi.org/10.24191/MAR.V20i02-03

Junaidi, Hendrian, & Syahputra, B. E. (2024). Fraud detection in public sector institutions: an empirical study in Indonesia. Cogent Business and Management, 11(1). https://doi.org/10.1080/23311975.2024.2404479

Kagias, P., Cheliatsidou, A., Garefalakis, A., Azibi, J., & Sariannidis, N. (2022). The fraud triangle – an alternative approach. Journal of Financial Crime, 29(3), 908–924. https://doi.org/10.1108/JFC-07-2021-0159

Karpoff, J. M. (2021). The future of financial fraud. Journal of Corporate Finance, 66, 101694. https://doi.org/10.1016/j.jcorpfin.2020.101694

Khikmah, S. N., Rohman, A., & Januarti, I. (2023). The role of internal audit and leadership style in increase of fraud prevention: a stewardship theory perspective. Corporate and Business Strategy Review, 4(4 Special Issue), 271–278. https://doi.org/10.22495/cbsrv4i4siart8

Kim, B.-H. (2023). Development of Online Fraud Detection and Sales Prediction Model using Supply Chain Dataset. Journal of System and Management Sciences, 13(2), 501–514. https://doi.org/10.33168/JSMS.2023.0234

Lubis, H. Z., Sari, M., Ramadhany, A. A., Ovami, D. C., & Brutu, I. R. (2024). Effect of internal audit, internal control, and audit quality on fraud prevention: Evidence from the public sector in Indonesia. Problems and Perspectives in Management, 22(2), 40–50. https://doi.org/10.21511/ppm.22(2).2024.04

Mappanyukki, R., Nengzih, N., Kusmayadi, D., & Endri, E. (2024). Fraud prevention: a study of skepticism moderating variable. Journal of Governance and Regulation, 13(2), 23–30. https://doi.org/10.22495/jgrv13i2art2

Mardjono, E. S., Suhartono, E., & Hariyadi, G. T. (2024). Does Forensic Accounting Matter? Diagnosing Fraud Using the Internal Control System and Big Data on Audit Institutions in Indonesia. WSEAS Transactions on Business and Economics, 21, 638–655. https://doi.org/10.37394/23207.2024.21.53

Meilita Rizkynanda, Argaleka Ayu Candraningsih, Titus Gustiagung Grace Widya Arta, & Maria Yovita R Pandin. (2023). Analysis of the Weakening Economy on Financial Resilience in the Tourism Industry in Surabaya During the Covid-19 Pandemic. Brilliant International Journal of Management and Tourism, 3(2), 180–196. https://doi.org/10.55606/bijmt.v3i2.1572

Miao, Z. (2024). Financial Fraud Detection and Prevention: Automated Approach Based on Deep Learning. Journal of Organizational and End User Computing, 36(1). https://doi.org/10.4018/JOEUC.354411

Modrušan, N., Mršić, L., & Rabuzin, K. (2021). Review of Public Procurement Fraud Detection Techniques Powered by Emerging Technologies. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 12, Issue 2). www.ijacsa.thesai.org

Morić, Z., Dakic, V., Djekic, D., & Regvart, D. (2024). Protection of Personal Data in the Context of E-Commerce. Journal of Cybersecurity and Privacy, 4(3), 731–761. https://doi.org/10.3390/jcp4030034

Mqadi, N., Naicker, N., & Adeliyi, T. (2021). A SMOTe based oversampling data-point approach to solving the credit card data imbalance problem in financial fraud detection. International Journal of Computing and Digital Systems, 10(1), 277–286. https://doi.org/10.12785/IJCDS/100128

Nadirsyah, Indriani, M., & Mulyany, R. (2024). Enhancing fraud prevention and internal control: the key role of internal audit in public sector governance. Cogent Business and Management, 11(1). https://doi.org/10.1080/23311975.2024.2382389

Nguyen, T. Q., Truong, T. H., Tran, M. D., Phung, V. H., Nguyen, T. L., & Tran, B. M. (2024). Determinants influencing the effectiveness of internal auditing and the responsibility of auditors in fraud detection in an emerging country. Journal of Governance and Regulation, 13(1 Special Issue), 310–321. https://doi.org/10.22495/jgrv13i1siart5

Olushola, A., & Mart, J. (2024). Fraud Detection using Machine Learning. https://doi.org/10.14293/PR2199.000647.v1

Paranoan, N., Padolo, A., Patiung, N., & Palalangan, C. A. (2024). Examining the integrity of whistleblowing systems and apparatus in the context of fraud prevention. International Journal of Public Policy and Administration Research, 11(4), 137–149. https://doi.org/10.18488/74.v11i4.4003

Pardosi, P., Sulistyowati, T., Anwar, K., Frimayasa, A., & Sugeng, I. S. (2025). A Systematic Literature Review on Employee Performance through Innovative Work Behavior. Indonesia Journal of Engineering and Education Technology (IJEET) Nomor, 3(1), 20–32. https://doi.org/https://doi.org/10.61991/ijeet.v3i1.127

Pham, Q. H., & Vu, K. P. (2024). Insight into how digital forensic accounting and metaverse circular business model innovation contribute to accelerated internationalization: evidence from Vietnam-based SMEs. Cogent Business & Management, 11(1). https://doi.org/10.1080/23311975.2024.2320203

Pramono, A. J. (2023). Determination of Auditor Experience, Task-Specific Knowledge, and Implementation of Institution Governance Against Fraud Prevention. APTISI Transactions on Technopreneurship, 5(1), 9–18. https://doi.org/10.34306/att.v5i1.276

Putra, I., Sulistiyo, U., Diah, E., Rahayu, S., & Hidayat, S. (2022). The influence of internal audit, risk management, whistleblowing system and big data analytics on the financial crime behavior prevention. Cogent Economics and Finance, 10(1). https://doi.org/10.1080/23322039.2022.2148363

Qatawneh, A. M. (2024). The role of artificial intelligence in auditing and fraud detection in accounting information systems: moderating role of natural language processing. International Journal of Organizational Analysis. https://doi.org/10.1108/IJOA-03-2024-4389

Raghul, S., Jeyakumar, G., Anbuudayasankar, S. P., & Lee, T.-R. (2024). E-procurement optimization in supply chain: A dynamic approach using evolutionary algorithms. Expert Systems with Applications, 255, 124823. https://doi.org/10.1016/j.eswa.2024.124823

Renigier-Bilozor, M., Źróbek-Różańska, A., & Janowski, A. (2024). Towards a Sustainable Property Tax System for Regional Development by Integrating the Antifragility Concept. Sustainability, 16(17), 7467. https://doi.org/10.3390/su16177467

Rethlefsen, M. L., & Page, M. J. (2021). PRISMA 2020 and PRISMA-S: common questions on tracking records and the flow diagram. Journal of the Medical Library Association, 110(2). https://doi.org/10.5195/jmla.2022.1449

Riadi, S., Nurrahmadini, E. P., Wijayani, D. I. L., & Harlan, F. B. (2025). Fraud Detection Unveiled: How Audit Quality Shapes Auditors’ Detection Capabilities? International Review of Management and Marketing, 15(2), 254–261. https://doi.org/10.32479/irmm.18188

Silalahi, S., Hanif, R. A., Supriono, S., Hariyani, E., & Wiguna, M. (2023). Determinants influencing fraud prevention in e-procurement: empirical evidence from indonesia. Innovative Marketing, 19, 199–206. https://doi.org/10.21511/im.19(4).2023.16

Singh, K., Boolaky, P., & Omoteso, K. (2022). The relationship between politics, legal system and financial reporting on fraud. Journal of Accounting and Management Information Systems, 21(3). https://doi.org/10.24818/jamis.2022.03005

Sulistyowati, T., Anwar, K., & Pardosi, P. (2025). A systematic literature review on dividend policy: theories, determinants, and firm outcomes. Journal EScience Humanity, 5(2).

Sulistyowati, T., & Husda, N. E. (2023). The trust factor: a comprehensive review of antecedents and their role in shaping online purchase intentions. Jurnal Ekonomi Dan Bisnis Airlangga, 33(2), 229–244. https://doi.org/10.20473/jeba.V33I22023.229-244

Sulistyowati, T., Pardosi, P., Anwar, K., Frimayasa, A., & Sugeng, I. S. (2025). Generational Differences in Purchase Intentions: A Systematic Review of Influencing Factors and Theoretical Frameworks. Indonesia Journal of Engineering and Education Technology (IJEET) Nomor, 3(1), 33–49. https://doi.org/https://doi.org/10.61991/ijeet.v3i1.128

Sulistyowati, T., & Sukati, I. (2024). Exploring Antecedents: Key Factors Shaping Global Entrepreneurial Intention. Indonesian Journal of Business and Entrepreneurship, 10(3), 556–567. https://doi.org/https://doi.org/10.17358/ijbe.10.3.556

Taherdoost, H. (2021). A Review on Risk Management in Information Systems: Risk Policy, Control and Fraud Detection. Electronics, 10(24), 3065. https://doi.org/10.3390/electronics10243065

Usman, A., & Sundari, S. (2024). The influence of village financial system (siskeudes application), transparency, and internal control on fraud prevention. Public and Municipal Finance, 13(2), 24–30. https://doi.org/10.21511/pmf.13(2).2024.03

van Bekkum, M., & Borgesius, F. Z. (2021). Digital welfare fraud detection and the Dutch SyRI judgment. European Journal of Social Security, 23(4), 323–340. https://doi.org/10.1177/13882627211031257

Van Belle, R., Baesens, B., & De Weerdt, J. (2023). CATCHM: A novel network-based credit card fraud detection method using node representation learning. Decision Support Systems, 164. https://doi.org/10.1016/j.dss.2022.113866

Velasco, R. B., Carpanese, I., Interian, R., Paulo Neto, O. C. G., & Ribeiro, C. C. (2021). A decision support system for fraud detection in public procurement. International Transactions in Operational Research, 28(1), 27–47. https://doi.org/10.1111/itor.12811

Wahidahwati, W., & Asyik, N. F. (2022). Determinants of Auditors Ability in Fraud Detection. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2022.2130165

Xu, B., Wang, Y., Liao, X., & Wang, K. (2023). Efficient fraud detection using deep boosting decision trees. Decision Support Systems, 175. https://doi.org/10.1016/j.dss.2023.114037

Yang, Z., Wang, Y., Shi, H., & Qiu, Q. (2024). Leveraging Mixture of Experts and Deep Learning-Based Data Rebalancing to Improve Credit Fraud Detection. Big Data and Cognitive Computing, 8(11). https://doi.org/10.3390/bdcc8110151

Yaseen, H., & Al-Amarneh, A. (2025). Adoption of Artificial Intelligence-Driven Fraud Detection in Banking: The Role of Trust, Transparency, and Fairness Perception in Financial Institutions in the United Arab Emirates and Qatar. Journal of Risk and Financial Management, 18(4). https://doi.org/10.3390/jrfm18040217

Zakiy, M., & Satyarini, J. N. E. (2025). Becoming a whistleblower and the role of a leader: desires and barriers. International Journal of Ethics and Systems. https://doi.org/10.1108/IJOES-06-2024-0173

Zhu, S., Ma, T., Wu, H., Ren, J., He, D., Li, Y., & Ge, R. (2025). Expanding and Interpreting Financial Statement Fraud Detection Using Supply Chain Knowledge Graphs. Journal of Theoretical and Applied Electronic Commerce Research, 20(1). https://doi.org/10.3390/jtaer20010026

Downloads

Published

2025-08-31

How to Cite

Sulistyowati, T., Pandin, M. Y. R., & Kusmaningtyas , A. (2025). Global Strategies in Fraud Prevention and Detection: A Systematic Review. Pancasila International Journal of Applied Social Science, 3(03), 389–403. https://doi.org/10.59653/pancasila.v3i03.1774