Evaluation of Use of Linear Regression to Predict Profit, Selling Price, and Stock on HSR Wheels Platform
DOI:
https://doi.org/10.59653/ijmars.v3i03.1967Keywords:
E-Commerce., linear regression, sales efficiency, sales prediction, data analysis techniquesAbstract
In the ever-evolving digital era, the e-commerce sector faces significant challenges in efficiently managing sales, selling prices, and inventory. This study aims to evaluate the effectiveness of a linear regression model in predicting sales, selling prices, and stock levels on the HSR Wheels e-commerce platform. A quantitative method was used by analyzing daily transaction data to identify the relationship between the time variable and sales, profit, and stock. The results showed that linear regression has limitations in modeling data complexity, with low R² scores and high Mean Absolute Error (MAE) values. These findings indicate the need for more advanced predictive models, such as machine learning algorithms, to improve prediction accuracy. This research is expected to contribute to developing more efficient and relevant sales strategies for e-commerce platforms.
Downloads
References
Vegetable Price Forecasting in E-Commerce Platform: A Review. Journal of Physics: Conference Series, 1878(1), 012071. https://doi.org/10.1088/1742-6596/1878/1/012071
Ketipov, R., Angelova, V., Doukovska, L., & Schnalle, R. (2023). Predicting User Behavior in e-Commerce Using Machine Learning. Cybernetics and Information Technologies, 23(3), 89–101. https://doi.org/10.2478/CAIT-2023-0026
Listyawati, I., & Kristiana, I. (2021). Pengaruh Return on Equity, Current Ratio, Size Company dan Debt to Equity Ratio Terhadap Nilai Perusahaan. MAKSIMUM: Media Akuntansi Universitas Muhammadiyah Semarang, 10(2), 47–57. https://doi.org/10.26714/MKI.10.2.2020.47-57
Mengenal Box-Plot (Box and Whisker Plots) – Accounting. (n.d.). Retrieved February 24, 2025, from https://accounting.binus.ac.id/2020/12/19/mengenal-box-plot-box-and-whisker-plots/
Narastu, R. S., Wiranata, M., Lubis, T. A., & Parhusip, J. (2025). Analisis Data Eksplorasi Dataset Gempa Bumi Indonesia. JOURNAL SAINS STUDENT RESEARCH, 3(1), 136–142. https://doi.org/10.61722/JSSR.V3I1.3266
Nurahman, N., & Ernawati, N. (2024). Analisis Algoritma C45 dan Regresi Linear untuk Memprediksi Hasil Panen Kelapa Sawit. Journal of Computer System and Informatics (JoSYC), 5(4), 1155–1163. https://doi.org/10.47065/JOSYC.V5I4.5828
Pan, C. L., Bai, X., Li, F., Zhang, D., Chen, H., & Lai, Q. (2021). How Business Intelligence Enables E-commerce: Breaking the Traditional E-commerce Mode and Driving the Transformation of Digital Economy. Proceedings - 2nd International Conference on E-Commerce and Internet Technology, ECIT 2021, 26–30. https://doi.org/10.1109/ECIT52743.2021.00013
Pola Belanja Konsumen serta Prediksi Stok Barang Berbasis Web Made Dwi Cahaya Putra, A. I., Made Arya Sasmita, G., Kadek Dwi Rusjayanthi, N., Raya Kampus Udayana, J., Kuta Sel, K., & Badung, K. (2023). Analisa Pola Belanja Konsumen serta Prediksi Stok Barang Berbasis Web. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 9(3), 415–427. https://doi.org/10.26418/JP.V9I3.67154
Rachmawati, D., Putriana, L., D4, ), Udara, M. T., Teknologi, S. T., & Abstrak, K. (2023). ANALISIS TREN ARUS KAS SEBELUM DAN SAAT PANDEMI PT ANGKASA PURA (PERSERO). Jurnal Manajemen Dirgantara, 16(1), 194–203. https://doi.org/10.56521/MANAJEMEN-DIRGANTARA.V16I1.810
Rohman, F., Ekonomi, F., Bisnis, D., Roy’an, M. F., Kunci, K., Produksi, B., Distribusi, B., & Produksi, H. (2021). Pengaruh Biaya Produksi dan Biaya Distribusi Terhadap Harga Jual Pada UKM Gendis Meubel. Jurnal Rekognisi Akuntansi , 5(2), 78–89. https://doi.org/10.34001/JRA.V5I2.182
Satya Saputra, P., Putu Gede Abdi Sudiatmika, I., Akuntansi, J., Negeri Bali, P., & Korespondensi, P. (2024). ANALISIS PREDIKSI HARGA SMARTPHONE TAHUN 2023 MENGGUNAKAN MODEL RANDOM FOREST REGRESSION BERDASARKAN FITUR-FITUR SPESIFIKASI TEKNIS ANALYSIS OF SMARTPHONE PRICE PREDICTION IN 2023 USING RANDOM FOREST REGRESSION MODEL BASED ON TECHNICAL SPECIFICATION FEATURES. Jurnal Komputer Dan Teknologi Sains (KOMTEKS), 3(2), 13–17. https://www.kaggle.com/datasets/howisusmanali/mo
Sihombing, P. R., Suryadiningrat, S., Sunarjo, D. A., & Yuda, Y. P. A. C. (2022). Identifikasi Data Outlier (Pencilan) dan Kenormalan Data Pada Data Univariat serta Alternatif Penyelesaiannya. Jurnal Ekonomi Dan Statistik Indonesia, 2(3), 307–316. https://doi.org/10.11594/JESI.02.03.07
Siroj, R. A., Afgani, W., Fatimah, F., Septaria, D., & Salsabila, G. Z. (2024). METODE PENELITIAN KUANTITATIF PENDEKATAN ILMIAH UNTUK ANALISIS DATA. Jurnal Review Pendidikan Dan Pengajaran (JRPP), 7(3), 11279–11289. https://doi.org/10.31004/JRPP.V7I3.32467
Sri Rahayu, Y., Saputra, Y., Irawan, D., Muhammadiyah Karanganyar, U., Teknologi Bisnis Riau Program Studi Teknik Komputer, I., Sains Dan Teknologi Jl Raya Solo-TawangmanguKm, F., Tasikmadu, K., & Karanganyar, K. (2024). IMPLEMENTASI METODE WATERFALL PADA PENGEMBANGAN SISTEM INFORMASI MOBILE E-DISARPUS. ZONAsi: Jurnal Sistem Informasi, 6(2), 523–534. https://doi.org/10.31849/ZN.V6I2.20538
Syahputra, H., Syahril, M., Studi Mahasiswa, P., Triguna Dharma, S., & Studi Dosen Pembimbing, P. (2020). Prediksi Jumlah Murid Baru Dengan Menggunakan Metode Regresi Linear Berganda. Jurnal Cyber Tech, 3(4), 671–679. https://doi.org/10.53513/JCT.V3I4.3215
Zaim Shahrel, M., Mutalib, S., & Abdul-Rahman, S. (2021). PriceCop – Price Monitor and Prediction Using Linear Regression and LSVM-ABC Methods for E-commerce Platform. International Journal of Information Engineering and Electronic Business, 13(1), 1–14. https://doi.org/10.5815/IJIEEB.2021.01.01
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Esa Fauzi, Bagus Alit Prasetyo; Adi Purnama; Rizky Bagus Pangestu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).














