Projection of HIV/AIDS Mortality in Adamawa State through the Lee-Carter Model: Strides toward SDG-3

Authors

  • Wasinda Bassi Nuhu Modibbo Adama University, Yola, Adamawa State, Nigeria https://orcid.org/0009-0008-4189-1598
  • Hyelda Stephen Modibbo Adama University, Yola, Adamawa State, Nigeria https://orcid.org/0009-0009-6844-3872
  • Usman Almujaddid Abdulkadir Modibbo Adama University, Yola, Adamawa State, Nigeria
  • Richard Martins Sirante Modibbo Adama University, Yola, Adamawa State, Nigeria
  • Francisca Jugivetje Sirante Jos University Teaching Hospital, Jos, Plateau State, Nigeria https://orcid.org/0009-0008-5442-4198

DOI:

https://doi.org/10.59653/ijmars.v3i02.1712

Keywords:

Mortality, HIV/AIDS, Lee-Carter, Projection, Nigeria

Abstract

Globally, HIV/AIDS remains a significant health concern, with profound impacts in developing nations, including Nigeria. This study aims to project mortality among HIV patients in Adamawa State using the Lee-Carter model to assess progress towards the third Sustainable Development Goal (SDG-3) - terminating AIDS by 2030. Mortality data for 2011-2020 on HIV patients aged 15-59 years receiving antiretroviral therapy (ART) was obtained from Adamawa State AIDS control database. The Lee-Carter model, using the Singular Value decomposition (SVD) for parameter estimation was fitted to estimate age-specific parameters. The time series component was forecast using ARIMA(0,1,0). Mortality data from 2011 to 2020 revealed a substantial 296% reduction in mortality, a testament to government and NGO interventions. The study delineates varied age group responses to improvements in mortality rates, pinpointing ages 55-59 as the most affected, while ages 15-19 exhibit the lowest mortality rates. Furthermore, individuals aged 20-24 show heightened responsiveness to general mortality improvements compared to other age cohorts. This work substantiates that Adamawa State has achieved substantial progress, exceeding the SDG-3 target of a 90% decline in HIV/AIDS patient mortality rate, setting a promising trajectory towards an AIDS-free society by 2030. However targeted strategies are still needed for older patients.

Downloads

Download data is not yet available.

References

Assefa, Y. and Gilks, C. F. (2020). Ending the epidemic of HIV/AIDS by 2030: Will there be an endgame to HIV, or an endemic HIV requiring an integrated health systems response in many countries? International Journal of Infectious Diseases, 100: 273-277. https://doi.org/10.1016/j.ijid.2020.09.011

Bergeron-Boucher, M.-P. and Kjærgaard, S. (2022). Mortality forecasting at age 65 and above: an age-specific evaluation of the Lee-Carter model. Scandinavian Actuarial Journal, 2022(1): 64-79. https://doi.org/10.1080/03461238.2021.1928542

Chen, Y. and Khaliq, A. Q. M. (2022). Comparative Study of Mortality Rate Prediction Using Data-Driven Recurrent Neural Networks and the Lee–Carter Model. Big Data and Cognitive Computing, 6(4): 134.

Debón, A., Haberman, S., Montes, F. and Otranto, E. (2021). Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model. International Journal of Environmental Research and Public Health, 18(4): 2204.

Fajar, M. and Fajariyanto, E. (2022). Lee-Carter Modeling for Mortality in Indonesia with A Bayesian Approach. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 16(4): 1241-1248. https://doi.org/10.30598/barekengvol16iss4pp1241-1248

Guaraldi, G., Orlando, G., Zona, S., Menozzi, M., Carli, F., Garlassi, E., Berti, A., Rossi, E., Roverato, A. and Palella, F. (2011). Premature Age-Related Comorbidities Among HIV-Infected Persons Compared With the General Population. Clinical Infectious Diseases, 53(11): 1120-1126. https://doi.org/10.1093/cid/cir627

Ibrahim, N. S. M., Lazam, N. M. and Shair, S. N. (2021). Forecasting Malaysian mortality rates using the Lee-Carter model with fitting period variants. Journal of Physics: Conference Series, 1988(1): 012103. https://doi.org/10.1088/1742-6596/1988/1/012103

Jones, J., Sullivan, P. S. and Curran, J. W. (2019). Progress in the HIV epidemic: Identifying goals and measuring success. PLOS Medicine, 16(1): e1002729. https://doi.org/10.1371/journal.pmed.1002729

Liu, Q., Ling, C., Li, D. and Peng, L. (2019). Bias-Corrected Inference for a Modified Lee–Carter Mortality Model. ASTIN Bulletin, 49(2): 433-455. https://doi.org/10.1017/asb.2019.9

Mahy, M. I., Sabin, K. M., Feizzadeh, A. and Wanyeki, I. (2021). Progress towards 2020 global HIV impact and treatment targets. Journal of the International AIDS Society, 24(S5): e25779. https://doi.org/https://doi.org/10.1002/jia2.25779

Mills, E. J., Bakanda, C., Birungi, J., Chan, K., Ford, N., Cooper, C. L., Nachega, J. B., Dybul, M. and Hogg, R. S. (2011). Life expectancy of persons receiving combination antiretroviral therapy in low-income countries: a cohort analysis from Uganda. Annals of Internal Medicine, 155(4): 209-216. https://doi.org/10.7326/0003-4819-155-4-201108160-00358

Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S. and Perla, F. (2019). A Deep Learning Integrated Lee–Carter Model. Risks, 7(1): 33.

Odugbesan, J. A. and Rjoub, H. (2019). Relationship among HIV/AIDS Prevalence, Human Capital, Good Governance, and Sustainable Development: Empirical Evidence from Sub-Saharan Africa. Sustainability, 11(5): 1348.

Odugbesan, J. A. and Rjoub, H. (2020). Evaluating HIV/Aids prevalence and sustainable development in sub-Saharan Africa: the role of health expenditure. African Health Sciences, 20(2): 568-578. https://doi.org/10.4314/ahs.v20i2.4

Peres, R. M. (2022). Modelling Hospital Admission Rates in São Paulo, Brazil: Lee-Carter Model Vs. Neural Networks Universidade de Lisboa (Portugal)].

Rodger, A. J., Lodwick, R., Schechter, M., Deeks, S., Amin, J., Gilson, R., Paredes, R., Bakowska, E., Engsig, F. N., Phillips, A. and for the INSIGHT SMART, E. S. G. (2013). Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS, 27(6): 973-979. https://doi.org/10.1097/QAD.0b013e32835cae9c

Safitri, L., Mardiyati, S. and Rahim, H. (2018). Estimation of mortality rate in Indonesia with Lee-Carter model. AIP Conference Proceedings, 2023(1). https://doi.org/10.1063/1.5064207

Safitri, Y. R., Mardiyati, S. and Malik, M. (2019). The Cairns-Blake-Dowd model to forecast Indonesian mortality rates. AIP Conference Proceedings, 2168(1). https://doi.org/10.1063/1.5132466

Smit, M., Brinkman, K., Geerlings, S., Smit, C., Thyagarajan, K., Sighem, A. v., de Wolf, F. and Hallett, T. B. (2015). Future challenges for clinical care of an ageing population infected with HIV: a modelling study. The Lancet Infectious Diseases, 15(7): 810-818. https://doi.org/10.1016/S1473-3099(15)00056-0

Ukaegbu, E., Alibekova, R., Ali, S., Crape, B. and Issanov, A. (2022). Trends of HIV/AIDS knowledge and attitudes among Nigerian women between 2007 and 2017 using Multiple Indicator Cluster Survey data. BMC Public Health, 22(1): 440. https://doi.org/10.1186/s12889-022-12865-y

UNAIDS. (2020). Global HIV & AIDS Statistics — 2020 Fact Sheet. https://www.unaids.org/en/resources/fact-sheet

Zili, A. H. A., Mardiyati, S. and Lestari, D. (2018). Forecasting Indonesian mortality rates using the Lee-Carter model and ARIMA method. AIP Conference Proceedings, 2023(1). https://doi.org/10.1063/1.5064209

Downloads

Published

2025-06-27

How to Cite

Nuhu, W. B., Stephen, H., Abdulkadir, U. A., Sirante, R. M., & Sirante, F. J. (2025). Projection of HIV/AIDS Mortality in Adamawa State through the Lee-Carter Model: Strides toward SDG-3. International Journal of Multidisciplinary Approach Research and Science, 3(02), 708–720. https://doi.org/10.59653/ijmars.v3i02.1712